The purpose of this work is to implement a discontinuous Galerkin(DG)method with a one-sided flux for a singularly perturbed Volterra integro-differential equation(VIDE)with a smooth kernel.First,the regularity proper...The purpose of this work is to implement a discontinuous Galerkin(DG)method with a one-sided flux for a singularly perturbed Volterra integro-differential equation(VIDE)with a smooth kernel.First,the regularity property and a decomposition of the exact solution of the singularly perturbed VIDE with the initial condition are provided.Then the existence and uniqueness of the DG solution are proven.Then some appropriate projection-type interpolation operators and their corresponding approximation properties are established.Based on the decomposition of the exact solution and the approximation properties of the projection type interpolants,the DG method achieves the uniform convergence in the L2 norm with respect to the singular perturbation parameter e when the space of polynomials with degree p is used.A numerical experiment validates the theoretical results.Furthermore,an ultra-convergence order 2p+1 at the nodes for the one-sided flux,uniform with respect to the singular perturbation parameter e,is observed numerically.展开更多
In this paper, we prove the existence, uniqueness and uniform convergence of the solution of finite volume element method based on the P1 conforming element for non-selfadjoint and indefinite elliptic problems under m...In this paper, we prove the existence, uniqueness and uniform convergence of the solution of finite volume element method based on the P1 conforming element for non-selfadjoint and indefinite elliptic problems under minimal elliptic regularity assumption.展开更多
In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error esti...In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error estimate is achieved by bilinear finite elements on a Shishkin type mesh. Here Nx and Ny are the number of elements in the x- and y-directions, respectively. Numerical results are provided supporting our theoretical analysis.展开更多
This paper concerns a discontinuous Galerkin(DG)method for a one-dimensional singularly perturbed problem which possesses essential characteristic of second order convection-diffusion problem after some simple transfo...This paper concerns a discontinuous Galerkin(DG)method for a one-dimensional singularly perturbed problem which possesses essential characteristic of second order convection-diffusion problem after some simple transformations.We derive an optimal convergence of the DG method for eight layer-adapted meshes in a general framework.The convergence rate is valid independent of the small parameter.Furthermore,we establish a sharper L^(2)-error estimate if the true solution has a special regular component.Numerical experiments are also given.展开更多
In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p...In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p)^(2)-statistically Cauchy sequence,P_(p)^(2)-statistical boundedness and core for double sequences will be described in addition to these findings.展开更多
On triangle or quadrilateral meshes, two finite element methods are proposed for solving the Reissner-Mindlin plate problem either by augmenting the Galerkin formulation or modifying the plate-thickness. In these meth...On triangle or quadrilateral meshes, two finite element methods are proposed for solving the Reissner-Mindlin plate problem either by augmenting the Galerkin formulation or modifying the plate-thickness. In these methods, the transverse displacement is approximated by conforming (bi)linear macroelements or (bi)quadratic elements, and the rotation by conforming (bi)linear elements. The shear stress can be locally computed from transverse displacement and rotation. Uniform in plate thickness, optimal error bounds are obtained for the transverse displacement, rotation, and shear stress in their natural norms. Numerical results are presented to illustrate the theoretical results.展开更多
The numerical solution of a singularly perturbed problem for the semilinear parabolic differential equation with parabolic boundary layers is discussed. A nonlinear two-level difference scheme is constructed on the sp...The numerical solution of a singularly perturbed problem for the semilinear parabolic differential equation with parabolic boundary layers is discussed. A nonlinear two-level difference scheme is constructed on the special non-uniform grids. The uniform con vergence of this scheme is proved and some numerical examples are given.展开更多
This paper deals with a monotone weighted average iterative method for solving semilinear singularly perturbed parabolic problems. Monotone sequences, based on the ac- celerated monotone iterative method, are construc...This paper deals with a monotone weighted average iterative method for solving semilinear singularly perturbed parabolic problems. Monotone sequences, based on the ac- celerated monotone iterative method, are constructed for a nonlinear difference scheme which approximates the semilinear parabolic problem. This monotone convergence leads to the existence-uniqueness theorem. An analysis of uniform convergence of the monotone weighted average iterative method to the solutions of the nonlinear difference scheme and continuous problem is given. Numerical experiments are presented.展开更多
We consider a uniform finite difference method for nonlinear singularly perturbed multi-point boundary value problem on Shishkin mesh. The problem is discretized using integral identities, interpolating quadrature rul...We consider a uniform finite difference method for nonlinear singularly perturbed multi-point boundary value problem on Shishkin mesh. The problem is discretized using integral identities, interpolating quadrature rules, exponential basis functions and remainder terms in integral form. We show that this method is the first order convergent in the discrete maximum norm for original problem (independent of the perturbation parameter ε). To illustrate the theoretical results, we solve test problem and we also give the error distributions in the solution in Table 1 and Figures 1-3.展开更多
In this paper,we propose a numerical method for turning point problems in one dimension based on Petrov-Galerkin finite element method(PGFEM).We first give a priori estimate for the turning point problem with a single...In this paper,we propose a numerical method for turning point problems in one dimension based on Petrov-Galerkin finite element method(PGFEM).We first give a priori estimate for the turning point problem with a single boundary turning point.Then we use PGFEM to solve it,where test functions are the solutions to piecewise approximate dual problems.We prove that our method has a first-order convergence rate in both L∞h norm and a discrete energy norm when we select the exact solutions to dual problems as test functions.Numerical results show that our scheme is efficient for turning point problems with different types of singularities,and the convergency coincides with our theoretical results.展开更多
It is well known that the nonparametric estimation of the regression function is highly sensitive to the presence of even a small proportion of outliers in the data.To solve the problem of typical observations when th...It is well known that the nonparametric estimation of the regression function is highly sensitive to the presence of even a small proportion of outliers in the data.To solve the problem of typical observations when the covariates of the nonparametric component are functional,the robust estimates for the regression parameter and regression operator are introduced.The main propose of the paper is to consider data-driven methods of selecting the number of neighbors in order to make the proposed processes fully automatic.We use thek Nearest Neighbors procedure(kNN)to construct the kernel estimator of the proposed robust model.Under some regularity conditions,we state consistency results for kNN functional estimators,which are uniform in the number of neighbors(UINN).Furthermore,a simulation study and an empirical application to a real data analysis of octane gasoline predictions are carried out to illustrate the higher predictive performances and the usefulness of the kNN approach.展开更多
In this paper,we establish a unified framework to study the almost sure global convergence and the expected convergencerates of a class ofmini-batch stochastic(projected)gradient(SG)methods,including two popular types...In this paper,we establish a unified framework to study the almost sure global convergence and the expected convergencerates of a class ofmini-batch stochastic(projected)gradient(SG)methods,including two popular types of SG:stepsize diminished SG and batch size increased SG.We also show that the standard variance uniformly bounded assumption,which is frequently used in the literature to investigate the convergence of SG,is actually not required when the gradient of the objective function is Lipschitz continuous.Finally,we show that our framework can also be used for analyzing the convergence of a mini-batch stochastic extragradient method for stochastic variational inequality.展开更多
In this paper, the authors propose a class of Dai-Yuan (abbr. DY) conjugate gradient methods with linesearch in the presence of perturbations on general function and uniformly convex function respectively. Their ite...In this paper, the authors propose a class of Dai-Yuan (abbr. DY) conjugate gradient methods with linesearch in the presence of perturbations on general function and uniformly convex function respectively. Their iterate formula is xk+1 = xk + αk(sk + ωk), where the main direction sk is obtained by DY conjugate gradient method, ωk is perturbation term, and stepsize αk is determined by linesearch which does not tend to zero in the limit necessarily. The authors prove the global convergence of these methods under mild conditions. Preliminary computational experience is also reported.展开更多
基金supported by the National Natural Science Foundation of China(12001189)supported by the National Natural Science Foundation of China(11171104,12171148)。
文摘The purpose of this work is to implement a discontinuous Galerkin(DG)method with a one-sided flux for a singularly perturbed Volterra integro-differential equation(VIDE)with a smooth kernel.First,the regularity property and a decomposition of the exact solution of the singularly perturbed VIDE with the initial condition are provided.Then the existence and uniqueness of the DG solution are proven.Then some appropriate projection-type interpolation operators and their corresponding approximation properties are established.Based on the decomposition of the exact solution and the approximation properties of the projection type interpolants,the DG method achieves the uniform convergence in the L2 norm with respect to the singular perturbation parameter e when the space of polynomials with degree p is used.A numerical experiment validates the theoretical results.Furthermore,an ultra-convergence order 2p+1 at the nodes for the one-sided flux,uniform with respect to the singular perturbation parameter e,is observed numerically.
基金The Major State Basic Research Program (19871051) of China the NNSF (19972039) of China and Yantai University Doctor Foundation (SX03B20).
文摘In this paper, we prove the existence, uniqueness and uniform convergence of the solution of finite volume element method based on the P1 conforming element for non-selfadjoint and indefinite elliptic problems under minimal elliptic regularity assumption.
文摘In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error estimate is achieved by bilinear finite elements on a Shishkin type mesh. Here Nx and Ny are the number of elements in the x- and y-directions, respectively. Numerical results are provided supporting our theoretical analysis.
基金Supported by the National Natural Science Foundation of China(11801396)National College Students Innovation and Entrepreneurship Training Project(202210332019Z)。
文摘This paper concerns a discontinuous Galerkin(DG)method for a one-dimensional singularly perturbed problem which possesses essential characteristic of second order convection-diffusion problem after some simple transformations.We derive an optimal convergence of the DG method for eight layer-adapted meshes in a general framework.The convergence rate is valid independent of the small parameter.Furthermore,we establish a sharper L^(2)-error estimate if the true solution has a special regular component.Numerical experiments are also given.
文摘In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p)^(2)-statistically Cauchy sequence,P_(p)^(2)-statistical boundedness and core for double sequences will be described in addition to these findings.
基金supported by NSFC(11571266,91430106,11171168,11071132)NSFC-RGC(China-Hong Kong)(11661161017)
文摘On triangle or quadrilateral meshes, two finite element methods are proposed for solving the Reissner-Mindlin plate problem either by augmenting the Galerkin formulation or modifying the plate-thickness. In these methods, the transverse displacement is approximated by conforming (bi)linear macroelements or (bi)quadratic elements, and the rotation by conforming (bi)linear elements. The shear stress can be locally computed from transverse displacement and rotation. Uniform in plate thickness, optimal error bounds are obtained for the transverse displacement, rotation, and shear stress in their natural norms. Numerical results are presented to illustrate the theoretical results.
文摘The numerical solution of a singularly perturbed problem for the semilinear parabolic differential equation with parabolic boundary layers is discussed. A nonlinear two-level difference scheme is constructed on the special non-uniform grids. The uniform con vergence of this scheme is proved and some numerical examples are given.
文摘This paper deals with a monotone weighted average iterative method for solving semilinear singularly perturbed parabolic problems. Monotone sequences, based on the ac- celerated monotone iterative method, are constructed for a nonlinear difference scheme which approximates the semilinear parabolic problem. This monotone convergence leads to the existence-uniqueness theorem. An analysis of uniform convergence of the monotone weighted average iterative method to the solutions of the nonlinear difference scheme and continuous problem is given. Numerical experiments are presented.
文摘We consider a uniform finite difference method for nonlinear singularly perturbed multi-point boundary value problem on Shishkin mesh. The problem is discretized using integral identities, interpolating quadrature rules, exponential basis functions and remainder terms in integral form. We show that this method is the first order convergent in the discrete maximum norm for original problem (independent of the perturbation parameter ε). To illustrate the theoretical results, we solve test problem and we also give the error distributions in the solution in Table 1 and Figures 1-3.
文摘In this paper,we propose a numerical method for turning point problems in one dimension based on Petrov-Galerkin finite element method(PGFEM).We first give a priori estimate for the turning point problem with a single boundary turning point.Then we use PGFEM to solve it,where test functions are the solutions to piecewise approximate dual problems.We prove that our method has a first-order convergence rate in both L∞h norm and a discrete energy norm when we select the exact solutions to dual problems as test functions.Numerical results show that our scheme is efficient for turning point problems with different types of singularities,and the convergency coincides with our theoretical results.
文摘It is well known that the nonparametric estimation of the regression function is highly sensitive to the presence of even a small proportion of outliers in the data.To solve the problem of typical observations when the covariates of the nonparametric component are functional,the robust estimates for the regression parameter and regression operator are introduced.The main propose of the paper is to consider data-driven methods of selecting the number of neighbors in order to make the proposed processes fully automatic.We use thek Nearest Neighbors procedure(kNN)to construct the kernel estimator of the proposed robust model.Under some regularity conditions,we state consistency results for kNN functional estimators,which are uniform in the number of neighbors(UINN).Furthermore,a simulation study and an empirical application to a real data analysis of octane gasoline predictions are carried out to illustrate the higher predictive performances and the usefulness of the kNN approach.
基金the National Natural Science Foundation of China(Nos.11871135 and 11801054)the Fundamental Research Funds for the Central Universities(No.DUT19K46)。
文摘In this paper,we establish a unified framework to study the almost sure global convergence and the expected convergencerates of a class ofmini-batch stochastic(projected)gradient(SG)methods,including two popular types of SG:stepsize diminished SG and batch size increased SG.We also show that the standard variance uniformly bounded assumption,which is frequently used in the literature to investigate the convergence of SG,is actually not required when the gradient of the objective function is Lipschitz continuous.Finally,we show that our framework can also be used for analyzing the convergence of a mini-batch stochastic extragradient method for stochastic variational inequality.
基金The work is supported by the National Natural Science Foundation of China under Grant No.10571106.
文摘In this paper, the authors propose a class of Dai-Yuan (abbr. DY) conjugate gradient methods with linesearch in the presence of perturbations on general function and uniformly convex function respectively. Their iterate formula is xk+1 = xk + αk(sk + ωk), where the main direction sk is obtained by DY conjugate gradient method, ωk is perturbation term, and stepsize αk is determined by linesearch which does not tend to zero in the limit necessarily. The authors prove the global convergence of these methods under mild conditions. Preliminary computational experience is also reported.
基金NSF of China (10671130)E-Institutes of Shanghai Municipal Education Commission (E03004)+2 种基金Shanghai Science and Technology Commission (06JC14092)Dawn Project of Shanghai Education Commission, Shanghai Leading Academic Discipline Project (T0401)Science Foundation of Shanghai (No. 04JC14062)