期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
THE UNIFORM CONVERGENCE OF A DG METHOD FOR A SINGULARLY PERTURBED VOLTERRA INTEGRO-DIFFERENTIAL EQUATION
1
作者 陶霞 谢资清 《Acta Mathematica Scientia》 SCIE CSCD 2023年第5期2159-2178,共20页
The purpose of this work is to implement a discontinuous Galerkin(DG)method with a one-sided flux for a singularly perturbed Volterra integro-differential equation(VIDE)with a smooth kernel.First,the regularity proper... The purpose of this work is to implement a discontinuous Galerkin(DG)method with a one-sided flux for a singularly perturbed Volterra integro-differential equation(VIDE)with a smooth kernel.First,the regularity property and a decomposition of the exact solution of the singularly perturbed VIDE with the initial condition are provided.Then the existence and uniqueness of the DG solution are proven.Then some appropriate projection-type interpolation operators and their corresponding approximation properties are established.Based on the decomposition of the exact solution and the approximation properties of the projection type interpolants,the DG method achieves the uniform convergence in the L2 norm with respect to the singular perturbation parameter e when the space of polynomials with degree p is used.A numerical experiment validates the theoretical results.Furthermore,an ultra-convergence order 2p+1 at the nodes for the one-sided flux,uniform with respect to the singular perturbation parameter e,is observed numerically. 展开更多
关键词 singularly perturbed VIDE DG method Shishkin mesh uniform convergence
下载PDF
Uniform Convergence for Finite Volume Element Method for Non-selfadjoint and Indefinite Elliptic Problems
2
作者 龙晓瀚 毕春加 《Northeastern Mathematical Journal》 CSCD 2005年第1期32-38,共7页
In this paper, we prove the existence, uniqueness and uniform convergence of the solution of finite volume element method based on the P1 conforming element for non-selfadjoint and indefinite elliptic problems under m... In this paper, we prove the existence, uniqueness and uniform convergence of the solution of finite volume element method based on the P1 conforming element for non-selfadjoint and indefinite elliptic problems under minimal elliptic regularity assumption. 展开更多
关键词 finite volume element method P1 conforming element uniform convergence non-selfadjoint and indefinite problem
下载PDF
Uniform Convergence Analysis for Singularly Perturbed Elliptic Problems with Parabolic Layers 被引量:2
3
作者 Jichun Li Yitung Chen 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2008年第2期138-149,共12页
In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error esti... In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error estimate is achieved by bilinear finite elements on a Shishkin type mesh. Here Nx and Ny are the number of elements in the x- and y-directions, respectively. Numerical results are provided supporting our theoretical analysis. 展开更多
关键词 Finite element methods singularly perturbed problems uniformly convergent
下载PDF
Uniform Convergence Analysis of the Discontinuous Galerkin Method on Layer-Adapted Meshes for Singularly Perturbed Problem
4
作者 SHI Jiamin LU Zhongshu +2 位作者 ZHANG Luyi LU Sunjia CHENG Yao 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2023年第5期411-420,共10页
This paper concerns a discontinuous Galerkin(DG)method for a one-dimensional singularly perturbed problem which possesses essential characteristic of second order convection-diffusion problem after some simple transfo... This paper concerns a discontinuous Galerkin(DG)method for a one-dimensional singularly perturbed problem which possesses essential characteristic of second order convection-diffusion problem after some simple transformations.We derive an optimal convergence of the DG method for eight layer-adapted meshes in a general framework.The convergence rate is valid independent of the small parameter.Furthermore,we establish a sharper L^(2)-error estimate if the true solution has a special regular component.Numerical experiments are also given. 展开更多
关键词 layer-adapted meshes singularly perturbed problem uniform convergence discontinuous Galerkin method
原文传递
On power series statistical convergence and new uniform integrability of double sequences
5
作者 Sevda Y■ld■z Kamil Demirci 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第3期519-532,共14页
In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p... In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p)^(2)-statistically Cauchy sequence,P_(p)^(2)-statistical boundedness and core for double sequences will be described in addition to these findings. 展开更多
关键词 power series methods statistical convergence uniform integrability double sequences
下载PDF
CONTINUOUS FINITE ELEMENT METHODS FOR REISSNER-MINDLIN PLATE PROBLEM
6
作者 段火元 马俊华 《Acta Mathematica Scientia》 SCIE CSCD 2018年第2期450-470,共21页
On triangle or quadrilateral meshes, two finite element methods are proposed for solving the Reissner-Mindlin plate problem either by augmenting the Galerkin formulation or modifying the plate-thickness. In these meth... On triangle or quadrilateral meshes, two finite element methods are proposed for solving the Reissner-Mindlin plate problem either by augmenting the Galerkin formulation or modifying the plate-thickness. In these methods, the transverse displacement is approximated by conforming (bi)linear macroelements or (bi)quadratic elements, and the rotation by conforming (bi)linear elements. The shear stress can be locally computed from transverse displacement and rotation. Uniform in plate thickness, optimal error bounds are obtained for the transverse displacement, rotation, and shear stress in their natural norms. Numerical results are presented to illustrate the theoretical results. 展开更多
关键词 Reissner-Mindlin plate continuous element triangle element quadrilateralelement finite element method uniform convergence
下载PDF
THE NUMERICAL SOLUTION OF A SINGULARLY PERTURBED PROBLEM FOR SEMILINEAR PARABOLIC DIFFERENTIAL EQUATION
7
作者 苏煜城 沈全 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1991年第11期1047-1056,共10页
The numerical solution of a singularly perturbed problem for the semilinear parabolic differential equation with parabolic boundary layers is discussed. A nonlinear two-level difference scheme is constructed on the sp... The numerical solution of a singularly perturbed problem for the semilinear parabolic differential equation with parabolic boundary layers is discussed. A nonlinear two-level difference scheme is constructed on the special non-uniform grids. The uniform con vergence of this scheme is proved and some numerical examples are given. 展开更多
关键词 semilinear parabolic differential equation singularly perturbed problem finite difference method uniform convergence
下载PDF
UNIFORM QUADRATIC CONVERGENCE OF A MONOTONE WEIGHTED AVERAGE METHOD FOR SEMILINEAR SINGULARLY PERTURBED PARABOLIC PROBLEMS*
8
作者 Igor Bogluev 《Journal of Computational Mathematics》 SCIE CSCD 2013年第6期620-637,共18页
This paper deals with a monotone weighted average iterative method for solving semilinear singularly perturbed parabolic problems. Monotone sequences, based on the ac- celerated monotone iterative method, are construc... This paper deals with a monotone weighted average iterative method for solving semilinear singularly perturbed parabolic problems. Monotone sequences, based on the ac- celerated monotone iterative method, are constructed for a nonlinear difference scheme which approximates the semilinear parabolic problem. This monotone convergence leads to the existence-uniqueness theorem. An analysis of uniform convergence of the monotone weighted average iterative method to the solutions of the nonlinear difference scheme and continuous problem is given. Numerical experiments are presented. 展开更多
关键词 Semilinear parabolic problem Singular perturbation Weighted average scheme Monotone iterative method uniform convergence.
原文传递
A Numerical Method for Nonlinear Singularly Perturbed Multi-Point Boundary Value Problem
9
作者 Musa Çakır Derya Arslan 《Journal of Applied Mathematics and Physics》 2016年第6期1143-1156,共14页
We consider a uniform finite difference method for nonlinear singularly perturbed multi-point boundary value problem on Shishkin mesh. The problem is discretized using integral identities, interpolating quadrature rul... We consider a uniform finite difference method for nonlinear singularly perturbed multi-point boundary value problem on Shishkin mesh. The problem is discretized using integral identities, interpolating quadrature rules, exponential basis functions and remainder terms in integral form. We show that this method is the first order convergent in the discrete maximum norm for original problem (independent of the perturbation parameter ε). To illustrate the theoretical results, we solve test problem and we also give the error distributions in the solution in Table 1 and Figures 1-3. 展开更多
关键词 Singular Perturbation Fitted Finite Difference method Shishkin Mesh Nonlocal Boundary Condition uniform convergence
下载PDF
A UNIFORM CONVERGENT PETROV-GALERKIN METHOD FOR A CLASS OF TURNING POINT PROBLEMS
10
作者 Li Feng Zhongyi Huang 《Journal of Computational Mathematics》 SCIE CSCD 2024年第5期1356-1379,共24页
In this paper,we propose a numerical method for turning point problems in one dimension based on Petrov-Galerkin finite element method(PGFEM).We first give a priori estimate for the turning point problem with a single... In this paper,we propose a numerical method for turning point problems in one dimension based on Petrov-Galerkin finite element method(PGFEM).We first give a priori estimate for the turning point problem with a single boundary turning point.Then we use PGFEM to solve it,where test functions are the solutions to piecewise approximate dual problems.We prove that our method has a first-order convergence rate in both L∞h norm and a discrete energy norm when we select the exact solutions to dual problems as test functions.Numerical results show that our scheme is efficient for turning point problems with different types of singularities,and the convergency coincides with our theoretical results. 展开更多
关键词 Turning point problem Petrov-Galerkin finite element method uniform convergency
原文传递
The k Nearest Neighbors Estimator of the M-Regression in Functional Statistics 被引量:4
11
作者 Ahmed Bachir Ibrahim Mufrah Almanjahie Mohammed Kadi Attouch 《Computers, Materials & Continua》 SCIE EI 2020年第12期2049-2064,共16页
It is well known that the nonparametric estimation of the regression function is highly sensitive to the presence of even a small proportion of outliers in the data.To solve the problem of typical observations when th... It is well known that the nonparametric estimation of the regression function is highly sensitive to the presence of even a small proportion of outliers in the data.To solve the problem of typical observations when the covariates of the nonparametric component are functional,the robust estimates for the regression parameter and regression operator are introduced.The main propose of the paper is to consider data-driven methods of selecting the number of neighbors in order to make the proposed processes fully automatic.We use thek Nearest Neighbors procedure(kNN)to construct the kernel estimator of the proposed robust model.Under some regularity conditions,we state consistency results for kNN functional estimators,which are uniform in the number of neighbors(UINN).Furthermore,a simulation study and an empirical application to a real data analysis of octane gasoline predictions are carried out to illustrate the higher predictive performances and the usefulness of the kNN approach. 展开更多
关键词 Functional data analysis quantile regression kNN method uniform nearest neighbor(UNN)consistency functional nonparametric statistics almost complete convergence rate
下载PDF
A Framework of Convergence Analysis of Mini-batch Stochastic Projected Gradient Methods 被引量:1
12
作者 Jian Gu Xian-Tao Xiao 《Journal of the Operations Research Society of China》 EI CSCD 2023年第2期347-369,共23页
In this paper,we establish a unified framework to study the almost sure global convergence and the expected convergencerates of a class ofmini-batch stochastic(projected)gradient(SG)methods,including two popular types... In this paper,we establish a unified framework to study the almost sure global convergence and the expected convergencerates of a class ofmini-batch stochastic(projected)gradient(SG)methods,including two popular types of SG:stepsize diminished SG and batch size increased SG.We also show that the standard variance uniformly bounded assumption,which is frequently used in the literature to investigate the convergence of SG,is actually not required when the gradient of the objective function is Lipschitz continuous.Finally,we show that our framework can also be used for analyzing the convergence of a mini-batch stochastic extragradient method for stochastic variational inequality. 展开更多
关键词 Stochastic projected gradient method Variance uniformly bounded convergence analysis
原文传递
GLOBAL CONVERGENCE OF THE DAI-YUAN CONJUGATE GRADIENT METHOD WITH PERTURBATIONS
13
作者 Changyu WANG Meixia LI 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2007年第3期416-428,共13页
In this paper, the authors propose a class of Dai-Yuan (abbr. DY) conjugate gradient methods with linesearch in the presence of perturbations on general function and uniformly convex function respectively. Their ite... In this paper, the authors propose a class of Dai-Yuan (abbr. DY) conjugate gradient methods with linesearch in the presence of perturbations on general function and uniformly convex function respectively. Their iterate formula is xk+1 = xk + αk(sk + ωk), where the main direction sk is obtained by DY conjugate gradient method, ωk is perturbation term, and stepsize αk is determined by linesearch which does not tend to zero in the limit necessarily. The authors prove the global convergence of these methods under mild conditions. Preliminary computational experience is also reported. 展开更多
关键词 Conjugate gradient method global convergence PERTURBATION uniformly convex.
原文传递
层状地基中盾构隧道开挖非均匀收敛引起临近管道变形预测 被引量:8
14
作者 张治国 黄茂松 +1 位作者 张孟喜 王卫东 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2010年第9期1867-1876,共10页
采用弹性层状地基模型来考虑地基土体的非均质性,并针对隧道开挖边界引入椭圆化非等量径向土体位移模式;采用基于位移控制技术的边界单元方法来求解土体自由位移场,提出层状地基中盾构隧道开挖非均匀收敛引起临近管道变形影响的位移控... 采用弹性层状地基模型来考虑地基土体的非均质性,并针对隧道开挖边界引入椭圆化非等量径向土体位移模式;采用基于位移控制技术的边界单元方法来求解土体自由位移场,提出层状地基中盾构隧道开挖非均匀收敛引起临近管道变形影响的位移控制分析方法。结合位移控制有限元数值模拟和既有离心模型试验结果进行对比分析,验证该方法的有效性。算例分析结果表明,土体自由位移场计算对管道纵向变形性能的评估具有较大影响;对于非均质层状地基,如果采用以往的将不同土体参数近似折算成平均值,进而按照弹性均质地基进行求解会带来较大的计算误差。研究成果可为合理制定城市地铁隧道施工对周围环境影响的保护措施提供一定理论依据。 展开更多
关键词 隧道工程 盾构隧道 管道 层状地基 非均匀收敛 位移控制分析方法
下载PDF
奇异摄动滞时微分方程的一致收敛数值方法(英文) 被引量:2
15
作者 孙业国 张东月 田红炯 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第17期3943-3944,3992,共3页
提出了求解线性奇异摄动滞时微分方程基于指数拟合技术的一致收敛和最佳一致收敛的数值方法,并证明了方法的一致收敛性。利用线性化的思想,并结合Newton-Raphson迭代,构造了求解非线性奇异摄动滞时微分方程相应的一致收敛的算法。数值... 提出了求解线性奇异摄动滞时微分方程基于指数拟合技术的一致收敛和最佳一致收敛的数值方法,并证明了方法的一致收敛性。利用线性化的思想,并结合Newton-Raphson迭代,构造了求解非线性奇异摄动滞时微分方程相应的一致收敛的算法。数值例子验证上述理论结论的正确性。 展开更多
关键词 奇异摄动 滞时微分方程 一致收敛 数值方法
下载PDF
修正乘子交替方向法求解三个可分离算子的凸优化 被引量:7
16
作者 何炳生 《运筹学学报》 CSCD 北大核心 2015年第3期57-70,共14页
指出直接推广的经典乘子交替方向法对三个算子的问题不能保证收敛的原因,并且给出将其改造成收敛算法的相应策略.同时,在一个统一框架下,证明了修正的乘子交替方向法的收敛性和遍历意义下具有0(1/t)收敛速率.
关键词 凸优化 分裂收缩算法 变分不等式 统一框架 收敛速率
下载PDF
双参数奇异摄动问题的L^∞一致收敛差分格式 被引量:3
17
作者 庄平辉 孙见荆 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 1998年第5期634-639,共6页
对带有两个小参数的奇异摄动问题,给出一种差分格式.并证明其在L∞范数意义下的一致收敛性.最后给出数值例子.
关键词 奇异摄动 一致收敛性 有限元法 差分格式
下载PDF
Verhulst型偏微分方程人口模型整体解的存在唯一性研究(Ⅰ) 被引量:10
18
作者 黄炯 《云南师范大学学报(自然科学版)》 1999年第6期28-39,共12页
本文讨论了Verhulst型偏微分方程人口模型pt(t,x) + px (t,x) = - d1(x) + K∫A0 p(t,ξ)dξp(t,x) (1)在一定非局部初边值条件下的解,运用逐次逼近法得到了方程(1)迭代... 本文讨论了Verhulst型偏微分方程人口模型pt(t,x) + px (t,x) = - d1(x) + K∫A0 p(t,ξ)dξp(t,x) (1)在一定非局部初边值条件下的解,运用逐次逼近法得到了方程(1)迭代解的表达式,并证明了它的整体存在唯一性。 展开更多
关键词 偏微分方程 人口模型 整体解 存在唯一性
下载PDF
一类描述人口群体增长模型的非线性方程非局部定解问题解的存在性研究 被引量:2
19
作者 黄炯 《云南师范大学学报(自然科学版)》 2003年第5期1-12,共12页
文章讨论了一类描述人口群体增长模型 p t( t,x) + p x( t,x) =-[d1 ( x) +d2 ( x) ∫Aap( t,ξ) dξ]p( t,x) ( 1 )在一定非局部初边值条件下的解 ,运用逐次逼近法得到了方程 ( 1 )解的表达式 ,并证明了解的整体存在唯一性。
关键词 人口群体增长模型 非线性方程 非局部初边值条件 逐次逼近法 非局部定解 整体存在唯一性
下载PDF
与积分有关的一个极限及其应用 被引量:1
20
作者 黄永忠 吴洁 《大学数学》 2021年第1期51-57,共7页
将崔尚斌编著的《数学分析教程》(中册)的一个综合习题进行推广,得到求与积分有关的极限的几个实用性结果,并给出多个应用例子.
关键词 积分 极限 拟合法 一致收敛
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部