Due to the fast development of industrialization and urbanization, shorelineextraction is necessary for the sustainable development and environment protection inmany countries. This study focused on the accurate metho...Due to the fast development of industrialization and urbanization, shorelineextraction is necessary for the sustainable development and environment protection inmany countries. This study focused on the accurate methods of extracting theinstantaneous waterline —shoreline obtained as the same instant as the satellite imageis acquired. Based on NDWI (Normalized Difference Water Index) and MNDWI(Modified Normalized Difference Water Index), the study changed the bandcombination and proposed a second modified normalized water index (SMNDWI) toextract the waterline. And, this new index is applied to three types of coast to evaluatethe performance of this method with traditional ones. Results show that SNDWI isbetter than NDWI and suitable for applying to the waterline extraction.展开更多
Drought was a severe recurring phenomenon in Iraq over the past two decades due to climate change despite the fact that Iraq has been one of the most water-rich countries in the Middle East in the past.The Iraqi Kurdi...Drought was a severe recurring phenomenon in Iraq over the past two decades due to climate change despite the fact that Iraq has been one of the most water-rich countries in the Middle East in the past.The Iraqi Kurdistan Region(IKR)is located in the north of Iraq,which has also suffered from extreme drought.In this study,the drought severity status in Sulaimaniyah Province,one of four provinces of the IKR,was investigated for the years from 1998 to 2017.Thus,Landsat time series dataset,including 40 images,were downloaded and used in this study.The Normalized Difference Vegetation Index(NDVI)and the Normalized Difference Water Index(NDWI)were utilized as spectral-based drought indices and the Standardized Precipitation Index(SPI)was employed as a meteorological-based drought index,to assess the drought severity and analyse the changes of vegetative cover and water bodies.The study area experienced precipitation deficiency and severe drought in 1999,2000,2008,2009,and 2012.Study findings also revealed a drop in the vegetative cover by 33.3%in the year 2000.Furthermore,the most significant shrinkage in water bodies was observed in the Lake Darbandikhan(LDK),which lost 40.5%of its total surface area in 2009.The statistical analyses revealed that precipitation was significantly positively correlated with the SPI and the surface area of the LDK(correlation coefficients of 0.92 and 0.72,respectively).The relationship between SPI and NDVI-based vegetation cover was positive but not significant.Low precipitation did not always correspond to vegetative drought;the delay of the effect of precipitation on NDVI was one year.展开更多
The Poyang Lake is a Ramsar site and is the important over-wintering site for migratory waterbirds along the East Asian-Australasian Fly way. Examining the effects of water level fluctuations on waterbird abundance an...The Poyang Lake is a Ramsar site and is the important over-wintering site for migratory waterbirds along the East Asian-Australasian Fly way. Examining the effects of water level fluctuations on waterbird abundance and analyzing the influencing mechanism is critical to waterbird protection in the context of hydrological alteration. In this study, the effect of water level regime on wintering goose abundance was examined and the influencing mechanism was interpreted. Synchronous waterbirds survey data, hydro- logical data, Moderate Resolution Imaging Spectroradiometer-Normalized Difference Vegetation Index (MODIS-NDVI) data and habi- tat data derived from Landsat TNUETM data and HJ/CCD data were combined. The satellite-derived Green Wave Index (GWI) based on MODIS-NDVI dataset was applied to detect changes in goose food resources. It was found that habitat size and vegetation conditions are key factors determining goose abundance. Geese numbers were positively correlated with habitat area, while intermediate range of vegetation productivity might benefit the goose abundance. Water level affects goose abundance by changing available habitat areas and vegetation conditions. We suggested that matching hydrological regime and exposed meadows time to wintering geese dynamics was crucial in the Poyang Lake wetlands. Our study could provide sound scientific information for hydrological management in the context of waterbird conservation.展开更多
Water is a very important natural resource and it supports all life forms on earth. It is used by humans in various ways including drinking, agriculture and for scientific research. The aim of this research was to dev...Water is a very important natural resource and it supports all life forms on earth. It is used by humans in various ways including drinking, agriculture and for scientific research. The aim of this research was to develop a routine to automatically extract water masks from RapidEye images, which could be used for further investigation such as water quality monitoring and change detection. A Python-based algorithm was therefore developed for this particular purpose. The developed routine combines three spectral indices namely Simple Ratios (SRs), Normalized Green Index (NGI) and Normalized Difference Water Index (NDWI). The two SRs are calculated between the NIR and green band, and between the NIR and red band. The NGI is calculated by rationing the green band to the sum of all bands in each image. The NDWI is calculated by differencing the green to the NIR and dividing by the sum of the green and NIR bands. The routine generates five intermediate water masks, which are spatially intersected to create a single intermediate water mask. In order to remove very small waterbodies and any remaining gaps in the intermediate water mask, morphological opening and closing were performed to generate the final water mask. This proposed algorithm was used to extract water masks from some RapidEye images. It yielded an Overall Accuracy of 95% and a mean Kappa Statistic of 0.889 using the confusion matrix approach.展开更多
One of the most serious droughts in last century occurred in eastern Sichuan Basin in the summer of 2006 (hereinafter called the Drought). The response of Moderate Resolution Imaging Spectroradiometer (MODIS, boarding...One of the most serious droughts in last century occurred in eastern Sichuan Basin in the summer of 2006 (hereinafter called the Drought). The response of Moderate Resolution Imaging Spectroradiometer (MODIS, boarding on NASA satellites of Terra and Aqua) to the Drought was analyzed in order to reach one practicable monitoring solution for regional soil moisture. Temporal process and spatial extension of the Drought were firstly estimated with ground meteorological and hydrological observations. Then, for the whole region of Sichuan and Chongqing, the remotely sensed Normalized Difference Water In- dex (NDWI) for the summers of 2001―2006 were calculated based on 8-day composite MODIS products, which were further used to construct a new water index (Normalized Difference Water Deviation Index, NDWDI) to examine the sensitivity of remote sensing in the Drought. The study showed that the NDWDI is more sensitive to regional drought than other absolute-soil-moisture-based indices. With the new index, the study extracted the spatial-temporal characteristics of the 2006 Drought, and explored its developing and withdrawing processes, which agreed with related statistics. Compared with ground method of drought observation, the NDWDI-based remote sensing solution of this paper is more pref- erable and practicable in that the local soil properties of water consumption and supply are implicitly taken into account, and the spatial representativity limit of ground observation is circumvented to a degree as satellite remotely senses the earth surface in a way of two-dimensional pixel matrix. So, the NDWDI-based method can be used to monitor regional soil water stress situation more practically and efficiently.展开更多
Multi-temporal series of satellite SPOT-VEGETATION normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) data from 1998 to 2007 were used for analyzing vegetation change of the eco...Multi-temporal series of satellite SPOT-VEGETATION normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) data from 1998 to 2007 were used for analyzing vegetation change of the ecotone in the west of the Northeast China Plain. The yearly and monthly maximal values,anomalies and change rates of NDVI and NDWI were calculated to reveal the interannual and seasonal changes in vegetation cover and vegetation water content. Linear regression method was adopted to characterize the trends in vegetation change. The yearly maximal NDVI decreased from 0.41 in 1998 to 0.37 in 2007,implying the decreasing trend of vegetation activity. There was a significant decrease of maximal NDVI in spring and summer over the study period,while an increase trend was observed in autumn. The vegetation-improved regions and vegetation-degraded regions occupied 17.03% and 20.30% of the study area,respectively. The maximal NDWI over growing season dropped by 0.027 in 1998–2007,and about 15.15% of the study area showed a decreasing trend of water content. Vegetation water stress in autumn was better than that in spring. Vegetation cover and water content variations were sensitive to annual precipitation,autumn precipitation and summer temperature. The vegetation degradation trend in this ecotone might be induced by the warm-drying climate especially continuous spring and summer drought in the recent ten years.展开更多
Glacial lakes in the High Mountain Asia(HMA)are sensitive to global warming and can result in much more severe flood disasters than some largesized lakes.An accurate and robust method for the extraction of glacial lak...Glacial lakes in the High Mountain Asia(HMA)are sensitive to global warming and can result in much more severe flood disasters than some largesized lakes.An accurate and robust method for the extraction of glacial lakes is critical to effective management of these natural water resources.Conventional methods often have limitations in terms of low spectral contrast and heterogeneous backgrounds in an image.This study presents a robust and automated method for the yearly mapping of glacial lake over a large scale,which took advantage of the complementarity between the modified normalized difference water index(MNDWI)and the nonlocal active contour model,required only local homogeneity in reflectance features of lake.The cloud computing approach with the Google Earth Engine(GEE)platform was used to process the intensive amount of Landsat 8 images from 2015 (344 path/rows and approximately 7504 scenes).The experimental results were validated by very high resolution images from Chinese GaoFen-1 (GF-1) panchromatic multi-spectral(PMS)and appeared a general good agreement.This is the first time that information regarding the spatial distribution of glacial lakes over the HMA has been derived automatically within quite a short period of time.By integrating it with the relevant indices,it can also be applied to detect other land cover types such as snow or vegetation with improved accuracy.展开更多
The availability of better economic possibilities and well-connected transportation networks has attracted people to migrate to peri-urban and rural neighbourhoods,changing the landscape of regions outside the city an...The availability of better economic possibilities and well-connected transportation networks has attracted people to migrate to peri-urban and rural neighbourhoods,changing the landscape of regions outside the city and fostering the growth of physical infrastructure.Using multi-temporal satellite images,the dynamics of Land Use/Land Cover(LULC)changes,the impact of urban growth on LULC changes,and regional environmental implications were investigated in the peri-urban and rural neighbourhoods of Durgapur Municipal Corporation in India.The study used different case studies to highlight the study area’s heterogeneity,as the phenomenon of change is not consistent.Landsat TM and OLI-TIRS satellite images in 1991,2001,2011,and 2021 were used to analyse the changes in LULC types.We used the relative deviation(RD),annual change intensity(ACI),uniform intensity(UI)to show the dynamicity of LULC types(agriculture land;built-up land;fallow land;vegetated land;mining area;and water bodies)during 1991-2021.This study also applied the Decision-Making Trial and Evaluation Laboratory(DEMATEL)to measure environmental sensitivity zones and find out the causes of LULC changes.According to LULC statistics,agriculture land,built-up land,and mining area increased by 51.7,95.46,and 24.79 km^(2),respectively,from 1991 to 2021.The results also suggested that built-up land and mining area had the greatest land surface temperature(LST),whereas water bodies and vegetated land showed the lowest LST.Moreover,this study looked at the relationships among LST,spectral indices(Normalized Differenced Built-up Index(NDBI),Normalized Difference Vegetation Index(NDVI),and Normalized Difference Water Index(NDWI)),and environmental sensitivity.The results showed that all of the spectral indices have the strongest association with LST,indicating that built-up land had a far stronger influence on the LST.The spectral indices indicated that the decreasing trends of vegetated land and water bodies were 4.26 and 0.43 km^(2)/a,respectively,during 1991-2021.In summary,this study can help the policy-makers to predict the increasing rate of temperature and the causes for the temperature increase with the rapid expansion of built-up land,thus making effective peri-urban planning decisions.展开更多
Scarcity of rainfall and limited irrigation water resources is the main challenge for agricultural expanding policies and strategies. At the same time, there is a high concern to increase the area of wheat cultivation...Scarcity of rainfall and limited irrigation water resources is the main challenge for agricultural expanding policies and strategies. At the same time, there is a high concern to increase the area of wheat cultivation in order to meet the increasing local consumption. The big challenge is to incerese wheat production using same or less amount of irrigation water. In this trend, the study was carried out to analyze the sensitivity of wheat yield to water deficit using remotely sensed data in El-Salhia agricultural project which located in the eastern part of Nile delta. Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) were extracted from Landsat 7. Water Deficit Index (WDI) used both LST minus air temperature (Tair) and vegetation index to estimate the relative water status. Yield response factor (ky) was derived from relationship between relative yield decrease and relative evapotranspiration deficit. The relative Evapotranspiration deficit was replaced by WDI. Linear regression was found between predicted wheat yield and actual wheat yield with 0.2?6, 0.025, 0.252 and 0.76 as correlation coefficient on 30th of Dec. 2012, 15th of Jan. 2013, 16th of Feb. 2013 and 20th of Mar. 2013 respectively. The main objective of this study is using a combination between FAO 33 paper approach and remote sensing techniques to estimate wheat yield response to water.展开更多
Aiming at the problems of high time-consuming, low accuracy and weak versatility of the existing methods of wa- ter extraction based on TM image, this paper combines principal component analysis (PCA) with the modif...Aiming at the problems of high time-consuming, low accuracy and weak versatility of the existing methods of wa- ter extraction based on TM image, this paper combines principal component analysis (PCA) with the modified normalized difference water index (MNDWI) which was improved by XU Han-qiu to construct a false color composite image that could separate water from others easily. This method can realize the water extraction based on TM image by analyzing the spectral characteristics of water in this false color image and establishing a water extraction model. This paper also compares the effi- ciency of this method with MNDWI, (TM2 + TM3) - (TM4 + TM5) and new water index (NWI), which were applied in the city and mountain of Taiyuan, respectively. The results show that the proposed method can extract water body from TM im- age more rapidly and efficiently and its accuracy is up to 94.03 %. In addition, this method does not require a manual selec- tion threshold, which meets the research reuuirement of high automaticm.展开更多
Remote sensing and GIS applications are being widely used for various projects relating to natural resource management. Forests are very important national assets for economic, environmental protection, social and cul...Remote sensing and GIS applications are being widely used for various projects relating to natural resource management. Forests are very important national assets for economic, environmental protection, social and cultural values and should be conserved in order to realize all these benefits. Kenya’s forests are rapidly declining due to pressure from increased population, technological innovation, urbanization human development and other land uses. Mau forest is one of the major forests in Kenya that is a catchment area for many Great Rift Valley lakes within the country and faces a lot of destruction. Continued destruction of the Mau forest will cause catastrophic environmental damage, resulting in massive food crises and compromising the livelihoods of millions of Kenyans, and the possible collapse of the tourism industry. The purpose of this research was to investigate the relationship between the increasing rate of deforestation and the reduction of the volumes of water in the neighboring lakes between the years 1989 to 2010. Satellite images from Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced Thematic Mapper (ETM+) were used for the detection of changes in the Mau forest and the dynamics of the neighboring water bodies that included lakes: Naivasha, Baringo, Nakuru, Elementaita and Bogoria. The research showed that from a period of 1989 to 2010 Mau forest has been decreasing due to deforestation and the water bodies have irregular dynamics in that, from 1989 to 2000, there was rise in the volume of water, this is attributed to the El Nino rains experienced in the country during the year 1997 and 1998. But between 2000 and 2010 the volume decreased as the forest is also decreasing. It is recommended that the government creates awareness to sensitize the public on the importance of such forests as catchment areas in Kenya.展开更多
基金supported by Tianjin Natural Science Foundation Project (14JCYBJC22500)
文摘Due to the fast development of industrialization and urbanization, shorelineextraction is necessary for the sustainable development and environment protection inmany countries. This study focused on the accurate methods of extracting theinstantaneous waterline —shoreline obtained as the same instant as the satellite imageis acquired. Based on NDWI (Normalized Difference Water Index) and MNDWI(Modified Normalized Difference Water Index), the study changed the bandcombination and proposed a second modified normalized water index (SMNDWI) toextract the waterline. And, this new index is applied to three types of coast to evaluatethe performance of this method with traditional ones. Results show that SNDWI isbetter than NDWI and suitable for applying to the waterline extraction.
文摘Drought was a severe recurring phenomenon in Iraq over the past two decades due to climate change despite the fact that Iraq has been one of the most water-rich countries in the Middle East in the past.The Iraqi Kurdistan Region(IKR)is located in the north of Iraq,which has also suffered from extreme drought.In this study,the drought severity status in Sulaimaniyah Province,one of four provinces of the IKR,was investigated for the years from 1998 to 2017.Thus,Landsat time series dataset,including 40 images,were downloaded and used in this study.The Normalized Difference Vegetation Index(NDVI)and the Normalized Difference Water Index(NDWI)were utilized as spectral-based drought indices and the Standardized Precipitation Index(SPI)was employed as a meteorological-based drought index,to assess the drought severity and analyse the changes of vegetative cover and water bodies.The study area experienced precipitation deficiency and severe drought in 1999,2000,2008,2009,and 2012.Study findings also revealed a drop in the vegetative cover by 33.3%in the year 2000.Furthermore,the most significant shrinkage in water bodies was observed in the Lake Darbandikhan(LDK),which lost 40.5%of its total surface area in 2009.The statistical analyses revealed that precipitation was significantly positively correlated with the SPI and the surface area of the LDK(correlation coefficients of 0.92 and 0.72,respectively).The relationship between SPI and NDVI-based vegetation cover was positive but not significant.Low precipitation did not always correspond to vegetative drought;the delay of the effect of precipitation on NDVI was one year.
基金Under the auspices of National Natural Science Foundation of China(No.41171030,41471088)
文摘The Poyang Lake is a Ramsar site and is the important over-wintering site for migratory waterbirds along the East Asian-Australasian Fly way. Examining the effects of water level fluctuations on waterbird abundance and analyzing the influencing mechanism is critical to waterbird protection in the context of hydrological alteration. In this study, the effect of water level regime on wintering goose abundance was examined and the influencing mechanism was interpreted. Synchronous waterbirds survey data, hydro- logical data, Moderate Resolution Imaging Spectroradiometer-Normalized Difference Vegetation Index (MODIS-NDVI) data and habi- tat data derived from Landsat TNUETM data and HJ/CCD data were combined. The satellite-derived Green Wave Index (GWI) based on MODIS-NDVI dataset was applied to detect changes in goose food resources. It was found that habitat size and vegetation conditions are key factors determining goose abundance. Geese numbers were positively correlated with habitat area, while intermediate range of vegetation productivity might benefit the goose abundance. Water level affects goose abundance by changing available habitat areas and vegetation conditions. We suggested that matching hydrological regime and exposed meadows time to wintering geese dynamics was crucial in the Poyang Lake wetlands. Our study could provide sound scientific information for hydrological management in the context of waterbird conservation.
文摘Water is a very important natural resource and it supports all life forms on earth. It is used by humans in various ways including drinking, agriculture and for scientific research. The aim of this research was to develop a routine to automatically extract water masks from RapidEye images, which could be used for further investigation such as water quality monitoring and change detection. A Python-based algorithm was therefore developed for this particular purpose. The developed routine combines three spectral indices namely Simple Ratios (SRs), Normalized Green Index (NGI) and Normalized Difference Water Index (NDWI). The two SRs are calculated between the NIR and green band, and between the NIR and red band. The NGI is calculated by rationing the green band to the sum of all bands in each image. The NDWI is calculated by differencing the green to the NIR and dividing by the sum of the green and NIR bands. The routine generates five intermediate water masks, which are spatially intersected to create a single intermediate water mask. In order to remove very small waterbodies and any remaining gaps in the intermediate water mask, morphological opening and closing were performed to generate the final water mask. This proposed algorithm was used to extract water masks from some RapidEye images. It yielded an Overall Accuracy of 95% and a mean Kappa Statistic of 0.889 using the confusion matrix approach.
基金the National Natural Science Foundation of China (Grant No. 40705037)Commonweal Fund of Changjiang Scientific Research Institute (Grant No. YWF0713/ZY05)
文摘One of the most serious droughts in last century occurred in eastern Sichuan Basin in the summer of 2006 (hereinafter called the Drought). The response of Moderate Resolution Imaging Spectroradiometer (MODIS, boarding on NASA satellites of Terra and Aqua) to the Drought was analyzed in order to reach one practicable monitoring solution for regional soil moisture. Temporal process and spatial extension of the Drought were firstly estimated with ground meteorological and hydrological observations. Then, for the whole region of Sichuan and Chongqing, the remotely sensed Normalized Difference Water In- dex (NDWI) for the summers of 2001―2006 were calculated based on 8-day composite MODIS products, which were further used to construct a new water index (Normalized Difference Water Deviation Index, NDWDI) to examine the sensitivity of remote sensing in the Drought. The study showed that the NDWDI is more sensitive to regional drought than other absolute-soil-moisture-based indices. With the new index, the study extracted the spatial-temporal characteristics of the 2006 Drought, and explored its developing and withdrawing processes, which agreed with related statistics. Compared with ground method of drought observation, the NDWDI-based remote sensing solution of this paper is more pref- erable and practicable in that the local soil properties of water consumption and supply are implicitly taken into account, and the spatial representativity limit of ground observation is circumvented to a degree as satellite remotely senses the earth surface in a way of two-dimensional pixel matrix. So, the NDWDI-based method can be used to monitor regional soil water stress situation more practically and efficiently.
基金Under the auspices of Major State Basic Research Development Program of China (973 Program) (No. 2009CB426305)National Natural Science Foundation of China (No. 30370267) "Eleventh Five-year" Science and Technology In-novation Platform Foster Program of Northeast Normal University (No. 106111065202)
文摘Multi-temporal series of satellite SPOT-VEGETATION normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) data from 1998 to 2007 were used for analyzing vegetation change of the ecotone in the west of the Northeast China Plain. The yearly and monthly maximal values,anomalies and change rates of NDVI and NDWI were calculated to reveal the interannual and seasonal changes in vegetation cover and vegetation water content. Linear regression method was adopted to characterize the trends in vegetation change. The yearly maximal NDVI decreased from 0.41 in 1998 to 0.37 in 2007,implying the decreasing trend of vegetation activity. There was a significant decrease of maximal NDVI in spring and summer over the study period,while an increase trend was observed in autumn. The vegetation-improved regions and vegetation-degraded regions occupied 17.03% and 20.30% of the study area,respectively. The maximal NDWI over growing season dropped by 0.027 in 1998–2007,and about 15.15% of the study area showed a decreasing trend of water content. Vegetation water stress in autumn was better than that in spring. Vegetation cover and water content variations were sensitive to annual precipitation,autumn precipitation and summer temperature. The vegetation degradation trend in this ecotone might be induced by the warm-drying climate especially continuous spring and summer drought in the recent ten years.
基金funded by the National Natural Science Foundation Project (Grant Nos. 41701481 and 41401511)
文摘Glacial lakes in the High Mountain Asia(HMA)are sensitive to global warming and can result in much more severe flood disasters than some largesized lakes.An accurate and robust method for the extraction of glacial lakes is critical to effective management of these natural water resources.Conventional methods often have limitations in terms of low spectral contrast and heterogeneous backgrounds in an image.This study presents a robust and automated method for the yearly mapping of glacial lake over a large scale,which took advantage of the complementarity between the modified normalized difference water index(MNDWI)and the nonlocal active contour model,required only local homogeneity in reflectance features of lake.The cloud computing approach with the Google Earth Engine(GEE)platform was used to process the intensive amount of Landsat 8 images from 2015 (344 path/rows and approximately 7504 scenes).The experimental results were validated by very high resolution images from Chinese GaoFen-1 (GF-1) panchromatic multi-spectral(PMS)and appeared a general good agreement.This is the first time that information regarding the spatial distribution of glacial lakes over the HMA has been derived automatically within quite a short period of time.By integrating it with the relevant indices,it can also be applied to detect other land cover types such as snow or vegetation with improved accuracy.
文摘The availability of better economic possibilities and well-connected transportation networks has attracted people to migrate to peri-urban and rural neighbourhoods,changing the landscape of regions outside the city and fostering the growth of physical infrastructure.Using multi-temporal satellite images,the dynamics of Land Use/Land Cover(LULC)changes,the impact of urban growth on LULC changes,and regional environmental implications were investigated in the peri-urban and rural neighbourhoods of Durgapur Municipal Corporation in India.The study used different case studies to highlight the study area’s heterogeneity,as the phenomenon of change is not consistent.Landsat TM and OLI-TIRS satellite images in 1991,2001,2011,and 2021 were used to analyse the changes in LULC types.We used the relative deviation(RD),annual change intensity(ACI),uniform intensity(UI)to show the dynamicity of LULC types(agriculture land;built-up land;fallow land;vegetated land;mining area;and water bodies)during 1991-2021.This study also applied the Decision-Making Trial and Evaluation Laboratory(DEMATEL)to measure environmental sensitivity zones and find out the causes of LULC changes.According to LULC statistics,agriculture land,built-up land,and mining area increased by 51.7,95.46,and 24.79 km^(2),respectively,from 1991 to 2021.The results also suggested that built-up land and mining area had the greatest land surface temperature(LST),whereas water bodies and vegetated land showed the lowest LST.Moreover,this study looked at the relationships among LST,spectral indices(Normalized Differenced Built-up Index(NDBI),Normalized Difference Vegetation Index(NDVI),and Normalized Difference Water Index(NDWI)),and environmental sensitivity.The results showed that all of the spectral indices have the strongest association with LST,indicating that built-up land had a far stronger influence on the LST.The spectral indices indicated that the decreasing trends of vegetated land and water bodies were 4.26 and 0.43 km^(2)/a,respectively,during 1991-2021.In summary,this study can help the policy-makers to predict the increasing rate of temperature and the causes for the temperature increase with the rapid expansion of built-up land,thus making effective peri-urban planning decisions.
文摘Scarcity of rainfall and limited irrigation water resources is the main challenge for agricultural expanding policies and strategies. At the same time, there is a high concern to increase the area of wheat cultivation in order to meet the increasing local consumption. The big challenge is to incerese wheat production using same or less amount of irrigation water. In this trend, the study was carried out to analyze the sensitivity of wheat yield to water deficit using remotely sensed data in El-Salhia agricultural project which located in the eastern part of Nile delta. Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) were extracted from Landsat 7. Water Deficit Index (WDI) used both LST minus air temperature (Tair) and vegetation index to estimate the relative water status. Yield response factor (ky) was derived from relationship between relative yield decrease and relative evapotranspiration deficit. The relative Evapotranspiration deficit was replaced by WDI. Linear regression was found between predicted wheat yield and actual wheat yield with 0.2?6, 0.025, 0.252 and 0.76 as correlation coefficient on 30th of Dec. 2012, 15th of Jan. 2013, 16th of Feb. 2013 and 20th of Mar. 2013 respectively. The main objective of this study is using a combination between FAO 33 paper approach and remote sensing techniques to estimate wheat yield response to water.
文摘Aiming at the problems of high time-consuming, low accuracy and weak versatility of the existing methods of wa- ter extraction based on TM image, this paper combines principal component analysis (PCA) with the modified normalized difference water index (MNDWI) which was improved by XU Han-qiu to construct a false color composite image that could separate water from others easily. This method can realize the water extraction based on TM image by analyzing the spectral characteristics of water in this false color image and establishing a water extraction model. This paper also compares the effi- ciency of this method with MNDWI, (TM2 + TM3) - (TM4 + TM5) and new water index (NWI), which were applied in the city and mountain of Taiyuan, respectively. The results show that the proposed method can extract water body from TM im- age more rapidly and efficiently and its accuracy is up to 94.03 %. In addition, this method does not require a manual selec- tion threshold, which meets the research reuuirement of high automaticm.
文摘Remote sensing and GIS applications are being widely used for various projects relating to natural resource management. Forests are very important national assets for economic, environmental protection, social and cultural values and should be conserved in order to realize all these benefits. Kenya’s forests are rapidly declining due to pressure from increased population, technological innovation, urbanization human development and other land uses. Mau forest is one of the major forests in Kenya that is a catchment area for many Great Rift Valley lakes within the country and faces a lot of destruction. Continued destruction of the Mau forest will cause catastrophic environmental damage, resulting in massive food crises and compromising the livelihoods of millions of Kenyans, and the possible collapse of the tourism industry. The purpose of this research was to investigate the relationship between the increasing rate of deforestation and the reduction of the volumes of water in the neighboring lakes between the years 1989 to 2010. Satellite images from Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced Thematic Mapper (ETM+) were used for the detection of changes in the Mau forest and the dynamics of the neighboring water bodies that included lakes: Naivasha, Baringo, Nakuru, Elementaita and Bogoria. The research showed that from a period of 1989 to 2010 Mau forest has been decreasing due to deforestation and the water bodies have irregular dynamics in that, from 1989 to 2000, there was rise in the volume of water, this is attributed to the El Nino rains experienced in the country during the year 1997 and 1998. But between 2000 and 2010 the volume decreased as the forest is also decreasing. It is recommended that the government creates awareness to sensitize the public on the importance of such forests as catchment areas in Kenya.