Based on the integral equation formulations and the moment method, a novel closed form solution for analyzing the mutual coupling effect between the cylindrical comformal rectangular microstrip patch antennas is pres...Based on the integral equation formulations and the moment method, a novel closed form solution for analyzing the mutual coupling effect between the cylindrical comformal rectangular microstrip patch antennas is presented. By using this algorithm, the elements of the impedance matrix and exciting vector are cast into closed forms, thus the computational efficiency is improved dramatically. Numerical results are presented to verify the validity and reliability of the algorithm.展开更多
This paper presents a closed form solution and numerical analysis for Es- helby's elliptic inclusion in an infinite plate. The complex variable method and the confor- real mapping technique are used. The continuity c...This paper presents a closed form solution and numerical analysis for Es- helby's elliptic inclusion in an infinite plate. The complex variable method and the confor- real mapping technique are used. The continuity conditions for the traction and displace- ment along the interface in the physical plane are reduced to the similar conditions along the unit circle of the mapping plane. The properties of the complex potentials defined in the finite elliptic region are analyzed. From the continuity conditions, one can separate and obtain the relevant complex potentials defined in the inclusion and the matrix. From the obtained complex potentials, the dependence of the real strains and stresses in the inclusion from the assumed eigenstrains is evaluated. In addition, the stress distribution on the interface along the matrix side is evaluated. The results are obtained in the paper for the first time.展开更多
Aim The general arbitrary cracked problem in an elastic plane was discussed. Methods For the purpose of acquiring the solution of the problem, a new formulation on the problem was proposed. Compared with the classic...Aim The general arbitrary cracked problem in an elastic plane was discussed. Methods For the purpose of acquiring the solution of the problem, a new formulation on the problem was proposed. Compared with the classical plane elastic crack model, only the known conditions were revised in the new formulation, which are greatly convenient to solve the problem, and no other new condition was given. Results and Conclusion The general exact analytic solution is given here based on the formulation though the problem is very complicated. Furthermore, the stress intensity factors K Ⅰ, K Ⅱ of the problem are also given.展开更多
This paper presents a closed-form solution for diffraction of plane SH waves by a semi-circular cavity in half-space by using wave function expansion method. Accuracy of the solution is checked by the displacement res...This paper presents a closed-form solution for diffraction of plane SH waves by a semi-circular cavity in half-space by using wave function expansion method. Accuracy of the solution is checked by the displacement residual and stress residual along the boundaries. Numerical results show that there are notable differences for response amplitudes between a semi-circular cavity and a whole-circular cavity in a half-space.展开更多
The investigation of closed form solutions for nonlinear evolution equations(NLEEs)is being an attractive subject in the different branches of mathematical and physical sciences.In this article,the enhanced(G'=G)-...The investigation of closed form solutions for nonlinear evolution equations(NLEEs)is being an attractive subject in the different branches of mathematical and physical sciences.In this article,the enhanced(G'=G)-expansion method has been applied to find the closed form solutions for NLEEs,such as the simplified MCH equation and third extended fifth order nonlinear equations which are very important in mathematical physics.Plentiful closed form solutions with arbitrary parameters are successfully obtained by this method which are expressed in terms of hyperbolic and trigonometric functions.It is shown that the obtained solutions are more general and fresh and can be helpful to analyze the NLEES in mathematical physics and engineering problems.展开更多
A closed-form wave function analytic solution of two-dimensional scattering and diffraction of incident plane SH-waves by a fl exible wall on a rigid shallow circular foundation embedded in an elastic half-space is pr...A closed-form wave function analytic solution of two-dimensional scattering and diffraction of incident plane SH-waves by a fl exible wall on a rigid shallow circular foundation embedded in an elastic half-space is presented. This research generalizes the previous solution by Trifunac in 1972, which tackled only the semi-circular foundation, to arbitrary shallow circular-arc foundation cases, and is thus comparatively more realistic. Ground surface displacement spectra at higher frequencies are also obtained. As an analytical series solution, the accuracy and error analysis of the numerical results are also discussed. It was observed from the results that the rise-to-span ratio of the foundation profi le, frequency of incident waves, and mass ratios of different media(foundation-structure-soil) are the three primary factors that may affect the surface ground motion amplitudes near the structure.展开更多
文摘Based on the integral equation formulations and the moment method, a novel closed form solution for analyzing the mutual coupling effect between the cylindrical comformal rectangular microstrip patch antennas is presented. By using this algorithm, the elements of the impedance matrix and exciting vector are cast into closed forms, thus the computational efficiency is improved dramatically. Numerical results are presented to verify the validity and reliability of the algorithm.
文摘This paper presents a closed form solution and numerical analysis for Es- helby's elliptic inclusion in an infinite plate. The complex variable method and the confor- real mapping technique are used. The continuity conditions for the traction and displace- ment along the interface in the physical plane are reduced to the similar conditions along the unit circle of the mapping plane. The properties of the complex potentials defined in the finite elliptic region are analyzed. From the continuity conditions, one can separate and obtain the relevant complex potentials defined in the inclusion and the matrix. From the obtained complex potentials, the dependence of the real strains and stresses in the inclusion from the assumed eigenstrains is evaluated. In addition, the stress distribution on the interface along the matrix side is evaluated. The results are obtained in the paper for the first time.
文摘Aim The general arbitrary cracked problem in an elastic plane was discussed. Methods For the purpose of acquiring the solution of the problem, a new formulation on the problem was proposed. Compared with the classical plane elastic crack model, only the known conditions were revised in the new formulation, which are greatly convenient to solve the problem, and no other new condition was given. Results and Conclusion The general exact analytic solution is given here based on the formulation though the problem is very complicated. Furthermore, the stress intensity factors K Ⅰ, K Ⅱ of the problem are also given.
基金supported by National Natural Science Foundation of China (No. 50978183)Tianjin Natural Science Foundation (No. 07JCZDJC10100)
文摘This paper presents a closed-form solution for diffraction of plane SH waves by a semi-circular cavity in half-space by using wave function expansion method. Accuracy of the solution is checked by the displacement residual and stress residual along the boundaries. Numerical results show that there are notable differences for response amplitudes between a semi-circular cavity and a whole-circular cavity in a half-space.
文摘The investigation of closed form solutions for nonlinear evolution equations(NLEEs)is being an attractive subject in the different branches of mathematical and physical sciences.In this article,the enhanced(G'=G)-expansion method has been applied to find the closed form solutions for NLEEs,such as the simplified MCH equation and third extended fifth order nonlinear equations which are very important in mathematical physics.Plentiful closed form solutions with arbitrary parameters are successfully obtained by this method which are expressed in terms of hyperbolic and trigonometric functions.It is shown that the obtained solutions are more general and fresh and can be helpful to analyze the NLEES in mathematical physics and engineering problems.
文摘A closed-form wave function analytic solution of two-dimensional scattering and diffraction of incident plane SH-waves by a fl exible wall on a rigid shallow circular foundation embedded in an elastic half-space is presented. This research generalizes the previous solution by Trifunac in 1972, which tackled only the semi-circular foundation, to arbitrary shallow circular-arc foundation cases, and is thus comparatively more realistic. Ground surface displacement spectra at higher frequencies are also obtained. As an analytical series solution, the accuracy and error analysis of the numerical results are also discussed. It was observed from the results that the rise-to-span ratio of the foundation profi le, frequency of incident waves, and mass ratios of different media(foundation-structure-soil) are the three primary factors that may affect the surface ground motion amplitudes near the structure.