期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Comparison of Morphological and Genetic Differentiations in Filial Generation of Cross Between Indica and Japonica Rice
1
作者 MAO Ting XU Hai Xu Quan Guo Yan-hua ZHU Chun-jie CHEN Kai WANG Jia-yu Xu Zheng-jin 《Rice science》 SCIE 2010年第1期82-86,共5页
A recombinant inbred line (RIL) population of F8 and F9 generations derived from a cross between a typical indica rice (Qishanzhan) and a typical japonica rice (Akihikari) was used to study the difference betwee... A recombinant inbred line (RIL) population of F8 and F9 generations derived from a cross between a typical indica rice (Qishanzhan) and a typical japonica rice (Akihikari) was used to study the difference between morphological differentiation based on phenotype characters and genetic differentiation using indica and japonica specific SSR markers, and to evaluate the relationship between vascular bundle characters and morphological and genetic differentiations. The results showed that the frequency distributions of morphological and genetic differentiations were all inclined to japonica type in the filial generation. The population was more inclined to japonica type based on genetic differentiation than on morphological differentiation. The consistent degrees of classification based on the Cheng’s index, the ratio of large vascular bundle number to small vascular bundle number in panicle neck (RLSVB) and the ratio of large vascular bundle number in the second internode from the top to that in the panicle neck (RLVB) were all about 50% compared with the genetic differentiation, and the consistent degree of the total scores of the Cheng’s index combined with the vascular bundle number ratios was significantly increased to about 80% compared with the genetic differentiation. Therefore, the vascular bundle characters could be used as a helpful supplement for subspecies classification. 展开更多
关键词 rice recombinant inbred line Cheng's index vascular bundle characters simple sequence repeat marker subspecies classification method
下载PDF
Theoretical aspects of selecting repeated unit cell model in micromechanical analysis using displacement-based finite element method 被引量:2
2
作者 Lijun GAO Chengyu WANG +1 位作者 Zhanli LIU Zhuo ZHUANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1417-1426,共10页
Repeated Unit Cell(RUC)is a useful tool in micromechanical analysis of composites using Displacement-based Finite Element(DFE)method,and merely applying Periodic Displacement Boundary Conditions(PDBCs)to RUC is ... Repeated Unit Cell(RUC)is a useful tool in micromechanical analysis of composites using Displacement-based Finite Element(DFE)method,and merely applying Periodic Displacement Boundary Conditions(PDBCs)to RUC is almost a standard practice to conduct such analysis.Two basic questions arising from this practice are whether Periodic Traction Boundary Conditions(PTBCs,also known as traction continuity conditions)are guaranteed and whether the solution is independent of selection of RUCs.This paper presents the theoretical aspects to tackle these questions,which unify the strong form,weak form and DFE method of the micromechanical problem together.Specifically,the solution’s independence of selection of RUCs is dealt with on the strong form side,PTBCs are derived from the weak form as natural boundary conditions,and the validity of merely applying PDBCs in micromechanical Finite Element(FE)analysis is proved by referring to its intrinsic connection to the strong form and weak form.Key points in the theoretical aspects are demonstrated by illustrative examples,and the merits of setting micromechanical FE analysis under the background of a clear theoretical framework are highlighted in the efficient selection of RUCs for Uni Directional(UD)fiber-reinforced composites. 展开更多
关键词 Finite element method Micromechanics of composites Periodic boundary condition Repeated unit cell Theoretical aspect Traction continuity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部