期刊文献+
共找到94篇文章
< 1 2 5 >
每页显示 20 50 100
High-Order Decoupled and Bound Preserving Local Discontinuous Galerkin Methods for a Class of Chemotaxis Models
1
作者 Wei Zheng Yan Xu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期372-398,共27页
In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-depe... In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving. 展开更多
关键词 Chemotaxis models Local discontinuous Galerkin(LDG)scheme Convex splitting method Variant energy quadratization method Scalar auxiliary variable method Spectral deferred correction method
下载PDF
Topology Optimization of Sound-Absorbing Materials for Two-Dimensional Acoustic Problems Using Isogeometric Boundary Element Method
2
作者 Jintao Liu Juan Zhao Xiaowei Shen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期981-1003,共23页
In this work,an acoustic topology optimizationmethod for structural surface design covered by porous materials is proposed.The analysis of acoustic problems is performed using the isogeometric boundary elementmethod.T... In this work,an acoustic topology optimizationmethod for structural surface design covered by porous materials is proposed.The analysis of acoustic problems is performed using the isogeometric boundary elementmethod.Taking the element density of porousmaterials as the design variable,the volume of porousmaterials as the constraint,and the minimum sound pressure or maximum scattered sound power as the design goal,the topology optimization is carried out by solid isotropic material with penalization(SIMP)method.To get a limpid 0–1 distribution,a smoothing Heaviside-like function is proposed.To obtain the gradient value of the objective function,a sensitivity analysis method based on the adjoint variable method(AVM)is proposed.To find the optimal solution,the optimization problems are solved by the method of moving asymptotes(MMA)based on gradient information.Numerical examples verify the effectiveness of the proposed topology optimization method in the optimization process of two-dimensional acoustic problems.Furthermore,the optimal distribution of sound-absorbingmaterials is highly frequency-dependent and usually needs to be performed within a frequency band. 展开更多
关键词 Boundary element method isogeometric analysis two-dimensional acoustic analysis sound-absorbing materials topology optimization adjoint variable method
下载PDF
On the feasibility of variable separation method based on Hamiltonian system for plane magnetoelectroelastic solids 被引量:5
3
作者 侯国林 阿拉坦仓 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第8期2753-2758,共6页
The eigenvalue problem of an infinite-dimensional Hamiltonian operator appearing in the isotropic plane magnetoelectroelastic solids is studied. First, all the eigenvalues and their eigenfunctions in a rectangular dom... The eigenvalue problem of an infinite-dimensional Hamiltonian operator appearing in the isotropic plane magnetoelectroelastic solids is studied. First, all the eigenvalues and their eigenfunctions in a rectangular domain are solved directly. Then the completeness of the eigenfunction system is proved, which offers a theoretic guarantee of the feasibility of variable separation method based on a Hamiltonian system for isotropic plane magnetoelectroelastic solids. Finally, the general solution for the equation in the rectangular domain is obtained by using the symplectic Fourier expansion method. 展开更多
关键词 magnetoelectroelastic solid variable separation method COMPLETENESS general solution
下载PDF
Force Control Compensation Method with Variable Load Stiffness and Damping of the Hydraulic Drive Unit Force Control System 被引量:10
4
作者 KONG Xiangdong BA Kaixian +3 位作者 YU Bin CAO Yuan ZHU Qixin ZHAO Hualong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期454-464,共11页
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force... Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness. 展开更多
关键词 quadruped robot force control system hydraulic drive unit force control compensation method variable load stiffness and damping simulation
下载PDF
A new complex variable meshless method for transient heat conduction problems 被引量:5
5
作者 王健菲 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期42-50,共9页
In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is pres... In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is presented. The variational method is employed to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. As the transient heat conduction problems are related to time, the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization. Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained. In order to demonstrate the applicability of the proposed method, numerical examples are given to show the high convergence rate, good accuracy, and high efficiency of the CVMM presented in this paper. 展开更多
关键词 meshless method improved complex variable moving least-square approximation com-plex variable meshless method transient heat conduction problem
下载PDF
Solving mKdV-sinh-Gordon equation by a modified variable separated ordinary differential equation method 被引量:4
6
作者 谢元喜 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第12期5123-5132,共10页
By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ODE method is developed for solving the mKdV-sinh-Gordon equation. As a result, many explicit and exact sol... By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ODE method is developed for solving the mKdV-sinh-Gordon equation. As a result, many explicit and exact solutions including some new formal solutions are successfully picked up for the mKdV-sinh-Gordon equation by this approach. 展开更多
关键词 modified variable separated ODE method mKdV-sinh-Gordon equation explicit andexact solution
下载PDF
A Combined Shape and Topology Optimization Based on Isogeometric Boundary Element Method for 3D Acoustics 被引量:2
7
作者 Jie Wang Fuhang Jiang +1 位作者 Wenchang Zhao Haibo Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第5期645-681,共37页
A combined shape and topology optimization algorithm based on isogeometric boundary element method for 3D acoustics is developed in this study.The key treatment involves using adjoint variable method in shape sensitiv... A combined shape and topology optimization algorithm based on isogeometric boundary element method for 3D acoustics is developed in this study.The key treatment involves using adjoint variable method in shape sensitivity analysis with respect to non-uniform rational basis splines control points,and in topology sensitivity analysis with respect to the artificial densities of sound absorption material.OpenMP tool in Fortran code is adopted to improve the efficiency of analysis.To consider the features and efficiencies of the two types of optimization methods,this study adopts a combined iteration scheme for the optimization process to investigate the simultaneous change of geometry shape and distribution of material to achieve better noise control.Numerical examples,such as sound barrier,simple tank,and BeTSSi submarine,are performed to validate the advantage of combined optimization in noise reduction,and to demonstrate the potential of the proposed method for engineering problems. 展开更多
关键词 Combined shape and topology optimization isogeometric boundary element method shape sensitivity analysis topology sensitivity analysis adjoint variable method sound absorption material
下载PDF
A new complex variable element-free Galerkin method for two-dimensional potential problems 被引量:4
8
作者 程玉民 王健菲 白福浓 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期43-52,共10页
In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-f... In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems, is presented. In the method, the integral weak form of control equations is employed, and the Lagrange multiplier is used to apply the essential boundary conditions. Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained. Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng, the functional in the ICVMLS approximation has an explicit physical meaning. Furthermore, the ICVEFG method has greater computational precision and efficiency. Three numerical examples are given to show the validity of the proposed method. 展开更多
关键词 meshless method improved complex variable moving least-square approximation im- proved complex variable element-free Galerkin method potential problem
下载PDF
The shape optimization of the arterial graft design by level set methods 被引量:1
9
作者 JIANG Dong HAN Dan-fu HU Xian-liang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2016年第2期205-218,共14页
The goal of the arterial graft design problem is to find an optimal graft built on an occluded artery, which can be mathematically modeled by a fluid based shape optimization problem. The smoothness of the graft is on... The goal of the arterial graft design problem is to find an optimal graft built on an occluded artery, which can be mathematically modeled by a fluid based shape optimization problem. The smoothness of the graft is one of the important aspects in the arterial graft design problem since it affects the flow of the blood significantly. As an attractive design tool for this problem, level set methods are quite efficient for obtaining better shape of the graft. In this paper, a cubic spline level set method and a radial basis function level set method are designed to solve the arterial graft design problem. In both approaches, the shape of the arterial graft is implicitly tracked by the zero-level contour of a level set function and a high level of smoothness of the graft is achieved. Numerical results show the efficiency of the algorithms in the arterial graft design. 展开更多
关键词 Arterial graft Shape optimization Level set method Adjoint variable method.
下载PDF
The complex variable meshless local Petrov-Galerkin method of solving two-dimensional potential problems 被引量:1
10
作者 杨秀丽 戴保东 张伟伟 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期49-55,共7页
Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential proble... Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square(MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local Petrov-Galerkin(MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method. 展开更多
关键词 meshless method complex variable moving least-square method complex variable meshless local Petrov-Galerkin method potential problems
下载PDF
Physical Parameter Identification Method Based on Modal Analysis for Two-axis On-road Vehicles:Theory and Simulation 被引量:3
11
作者 ZHENG Minyi ZHANG Bangji +1 位作者 ZHANG Jie ZHANG Nong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期756-764,共9页
Physical parameters are very important for vehicle dynamic modeling and analysis.However,most of physical parameter identification methods are assuming some physical parameters of vehicle are known,and the other unkno... Physical parameters are very important for vehicle dynamic modeling and analysis.However,most of physical parameter identification methods are assuming some physical parameters of vehicle are known,and the other unknown parameters can be identified.In order to identify physical parameters of vehicle in the case that all physical parameters are unknown,a methodology based on the State Variable Method(SVM) for physical parameter identification of two-axis on-road vehicle is presented.The modal parameters of the vehicle are identified by the SVM,furthermore,the physical parameters of the vehicle are estimated by least squares method.In numerical simulations,physical parameters of Ford Granada are chosen as parameters of vehicle model,and half-sine bump function is chosen to simulate tire stimulated by impulse excitation.The first numerical simulation shows that the present method can identify all of the physical parameters and the largest absolute value of percentage error of the identified physical parameter is 0.205%;and the effect of the errors of additional mass,structural parameter and measurement noise are discussed in the following simulations,the results shows that when signal contains 30 d B noise,the largest absolute value of percentage error of the identification is 3.78%.These simulations verify that the presented method is effective and accurate for physical parameter identification of two-axis on-road vehicles.The proposed methodology can identify all physical parameters of 7-DOF vehicle model by using free-decay responses of vehicle without need to assume some physical parameters are known. 展开更多
关键词 Parameter identification free-decay response state variable method modal parameter physical parameter
下载PDF
An improved complex variable element-free Galerkin method for two-dimensional elasticity problems 被引量:2
12
作者 白福浓 李东明 +1 位作者 王健菲 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第2期56-65,共10页
In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squar... In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squares (CVMLS) approximations presented by Cheng and Ren, the ICVMLS approximation has a great computational precision and efficiency. Based on the element-free Galerkin (EFG) method and the ICVMLS approximation, the improved complex variable element-free Galerkin (ICVEFG) method is presented for two-dimensional elasticity problems, and the corresponding formulae are obtained. Compared with the conventional EFC method, the ICVEFG method has a great computational accuracy and efficiency. For the purpose of demonstration, three selected numerical examples are solved using the ICVEFG method. 展开更多
关键词 meshless method improved complex variable moving least-squares approximation improved complex variable element-free Galerkin method ELASTICITY
下载PDF
The complex variable reproducing kernel particle method for two-dimensional elastodynamics 被引量:2
13
作者 陈丽 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第9期59-70,共12页
On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is present... On the basis of the reproducing kernel particle method (RKPM), a new meshless method, which is called the complex variable reproducing kernel particle method (CVRKPM), for two-dimensional elastodynamics is presented in this paper. The advantages of the CVRKPM are that the correction function of a two-dimensional problem is formed with one-dimensional basis function when the shape function is obtained. The Galerkin weak form is employed to obtain the discretised system equations, and implicit time integration method, which is the Newmark method, is used for time history analysis. And the penalty method is employed to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional elastodynamics are obtained. Three numerical examples of two-dimensional elastodynamics are presented, and the CVRKPM results are compared with the ones of the RKPM and analytical solutions. It is evident that the numerical results of the CVRKPM are in excellent agreement with the analytical solution, and that the CVRKPM has greater precision than the RKPM. 展开更多
关键词 meshless method reproducing kernel particle method complex variable reproducing kernel particle method elastodvnamics
下载PDF
New complex variable meshless method for advection-diffusion problems 被引量:1
14
作者 王健菲 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期92-98,共7页
In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equi... In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equivalent functional of two-dimensional advection-diffusion problems is formed,the variation method is used to obtain the equation system,and the penalty method is employed to impose the essential boundary conditions.The difference method for twopoint boundary value problems is used to obtain the discrete equations.Then the corresponding formulas of the ICVMM for advection-diffusion problems are presented.Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper.It is shown that ICVMM is very effective for advection-diffusion problems,and has a good convergent character,accuracy,and computational efficiency. 展开更多
关键词 meshless method improved complex variable moving least-square approximation improved complex variable meshless method advection-diffusion problem
下载PDF
Combining the complex variable reproducing kernel particle method and the finite element method for solving transient heat conduction problems 被引量:2
15
作者 陈丽 马和平 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期67-74,共8页
In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE metho... In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method. 展开更多
关键词 complex variable reproducing kernel particle method finite element method combined method transient heat conduction
下载PDF
Solving (2+1)-dimensional sine-Poisson equation by a modified variable separated ordinary differential equation method 被引量:1
16
作者 苏卡林 谢元喜 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第10期40-48,共9页
By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equa... By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equation. As a result, many explicit and exact solutions of the (2 + 1)-dimensional sine-Poisson equation are derived in a simple manner by this technique. 展开更多
关键词 modified variable separated ODE method (2 1)-dimensional sine-Poisson equation explicit and exact solution
下载PDF
DYNAMIC RESPONSE OF ELASTIC RECTANGULAR PLATES BY SPLINE STATE VARIABLE METHOD
17
作者 陈荣毅 沈小璞 沈鹏程 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第6期691-698,共8页
Application of spline element and state space method for analysis of dynamic response of elastic rectangular plates is presented. The spline element method is used for space domain and the state space method in contro... Application of spline element and state space method for analysis of dynamic response of elastic rectangular plates is presented. The spline element method is used for space domain and the state space method in control theory of system is used for time domain. A state variable recursive scheme is developed, then the dynamic response of structure can he calculated directly. Several numerical examples are given. The results which are presented to demonstrate the accuracy and efficiency of the present method are quite satisfactory. 展开更多
关键词 spline element state space method dynamic response recursive scheme spline state variable method
下载PDF
A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
18
作者 王启防 戴保东 栗振锋 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期238-244,共7页
On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is ... On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is developed based on the CVMLS approximation for constructing shape functions at scattered points, and the Heaviside step function is used as a test function in each sub-domain to avoid the need for a domain integral in symmetric weak form. In the construction of the well-performed shape function, the trial function of a two-dimensional (2D) problem is formed with a one-dimensional (1D) basis function, thus improving computational efficiency. The numerical results are compared with the exact solutions of the problems and the finite element method (FEM). This comparison illustrates the accuracy as well as the capability of the CVMLPG method. 展开更多
关键词 meshless method complex variable moving least-square method complex variable meshless localPetrov-Galerkin method transient heat conduction problems
下载PDF
Some discussions about method for solving the variable separating nonlinear models
19
作者 阮航宇 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第5期17-24,共8页
Through analysing the exact solution of some nonlinear models, the role of the variable separating method in solving nonlinear equations is discussed. We find that rich solution structures of some special fields of th... Through analysing the exact solution of some nonlinear models, the role of the variable separating method in solving nonlinear equations is discussed. We find that rich solution structures of some special fields of these equations come from the nonzero seed solution. However, these nonzero seed solutions is likely to result in the divergent phenomena for the other field component of the same equation. The convergence and the signification of all field components should be discussed when someone solves the nonlinear equation using the variable separating method. 展开更多
关键词 variable separating method nonzero seed solution nonlinear equation
下载PDF
A new fully quantum-mechanical method used to calculate the collisional broadening coefficients and shift coefficients of Rb D_1 lines perturbed by noble gases He and Ar
20
作者 张伟 史彦超 +1 位作者 胡碧涛 张毅 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第1期322-328,共7页
In this work, a new full quantum method is proposed to calculate the broadening and shift coefficients of the D1 line in neutral collision. Based on the variable phase approach and Baranger theory, this method calcula... In this work, a new full quantum method is proposed to calculate the broadening and shift coefficients of the D1 line in neutral collision. Based on the variable phase approach and Baranger theory, this method calculates the scattering phase shift instead of scattering matrix elements in order to simplify the calculation. As an illustration, this method is used to calculate the broadening and shift coefficients of the absorption lines of alkali metal atom Rb, as it collides with buffer gas He and Ar, in a temperature range from 150 K to 800 K. With a comparison with other calculations and experiment measurements, the reasonable agreements in all cases demonstrate the validity and simplicity of this method. 展开更多
关键词 collisional broadening and shift variable phase method phase shift
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部