In this paper, we combine the direct-forcing fictitious domain (DF/FD) method and the sharp interface method to resolve the problem of particle dielectrophoresis in two dimensions. The flow field and the motion of p...In this paper, we combine the direct-forcing fictitious domain (DF/FD) method and the sharp interface method to resolve the problem of particle dielectrophoresis in two dimensions. The flow field and the motion of particles are solved with the DF/FD method, the electric field is solved with the sharp inter- face method, and the electrostatic force on the particles is computed using the Maxwell stress tensor method. The proposed method is validated via three problems: effective conductivity of particle compos- ite between two planar plates, cell trapping in a channel, and motion of particles due to both conventional and traveling wave dielectrophoretic forces.展开更多
基金support from the National Natural Science Foundation of China(no.10872181)the National Basic Research Program of China(no.2006CB705400)+1 种基金Chinese Universities Scientific Fundthe Major Program of the National Natural Science Foundation of China(no.10632070)
文摘In this paper, we combine the direct-forcing fictitious domain (DF/FD) method and the sharp interface method to resolve the problem of particle dielectrophoresis in two dimensions. The flow field and the motion of particles are solved with the DF/FD method, the electric field is solved with the sharp inter- face method, and the electrostatic force on the particles is computed using the Maxwell stress tensor method. The proposed method is validated via three problems: effective conductivity of particle compos- ite between two planar plates, cell trapping in a channel, and motion of particles due to both conventional and traveling wave dielectrophoretic forces.