Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely comme...Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.展开更多
The structure and the acoustic medium of a passenger vehicle are modeled using the finite element method(FEM), and the interior noise is studied the help of the modal synthesis method (MSM). Sound pressure level (Lp) ...The structure and the acoustic medium of a passenger vehicle are modeled using the finite element method(FEM), and the interior noise is studied the help of the modal synthesis method (MSM). Sound pressure level (Lp) of the noise is calculated in several conditions of the models, and has good agreements with its test results. The MSM am be consequently used for predicting the vehicle interior noise in dssign stage so that the structure may be optimized for the Purpose of the most reduction of noise.展开更多
ICM (Independent Continuous Mapping) method can solve topological optimization problems with the minimized weight as the objective and subjected to displacement constraints. To get a clearer topological configuratio...ICM (Independent Continuous Mapping) method can solve topological optimization problems with the minimized weight as the objective and subjected to displacement constraints. To get a clearer topological configuration, by introducing the discrete condition of topological variables and integrating with the original objective, an optimal model with multi-objectives is formulated to make the topological variables approach 0 or 1 as near as possible, and the model reduces the effect of deleting rate on the result. The image-filtering method is employed to eliminate the checkerboard patterns and mesh dependence that occurred in the topology optimization of a continuum structure. The computational efficiency is enhanced through selecting quasi-active displacement constraints and a design region. Numerical examples indicate that this algorithm is robust and practicable, though the number of iterations is slightly increased with respect to the original algorithm.展开更多
As a special type of novel flexible structures, tensegrity holds promise for many potential applications in such fields as materials science, biomechanics, civil and aerospace engineering. Rhombic systems are an impor...As a special type of novel flexible structures, tensegrity holds promise for many potential applications in such fields as materials science, biomechanics, civil and aerospace engineering. Rhombic systems are an important class of tensegrity structures, in which each bar constitutes the longest diagonal of a rhombus of four strings. In this paper, we address the design methods of rhombic structures based on the idea that many tensegrity structures can be constructed by assembling one-bar elementary cells. By analyzing the properties of rhombic cells, we first develop two novel schemes, namely, direct enumeration scheme and cell-substitution scheme. In addition, a facile and efficient method is presented to integrate several rhombic systems into a larger tensegrity structure. To illustrate the applications of these methods, some novel rhombic tensegrity structures are constructed.展开更多
This paper extends Le van's work to the case of nonlinear problem and the complicated configuration. The wrinkling stress distribution and the pressure effects are also included in our analysis. Pseudo-beam method is...This paper extends Le van's work to the case of nonlinear problem and the complicated configuration. The wrinkling stress distribution and the pressure effects are also included in our analysis. Pseudo-beam method is presented based on the inflatable beam theory to model the inflatable structures as a set of inflatable beam elements with a prestressed state. In this method, the discretized nonlinear equations are given based upon the virtual work principle with a 3-node Timoshenko's beam model. Finite element simulation is performed by using a 3-node BEAM189 element incorporating ANSYS nonlinear program. The pressure effect is equivalent included in our method by modifying beam element cross-section parameters related to pressure. A benchmark example, the bending case of an inflatable cantilever beam, is performed to verify the accuracy of our proposed method. The comparisons reveal that the numerical results obtained with our method are close to open published analytical and membrane finite element results. The method is then used to evaluate the whole buckling and the loadcarrying characteristics of an inflatable support frame subjected to a compression force. The wrinkling stress and region characteristics are also shown in the end. This method gives better convergence characteristics, and requires much less computation time. It is very effective to deal with the whole load-carrying ability analytical problems for large scale inflatable structures with complex configuration.展开更多
The systematic analysis of the hierarchical relationship among the factors affecting the sustainable supply chain implementation of water diversion projects has theoretical value and practical significance for the sus...The systematic analysis of the hierarchical relationship among the factors affecting the sustainable supply chain implementation of water diversion projects has theoretical value and practical significance for the sustainable development of large-scale water diversion projects. Through the investigation of relevant literature, books, web pages, materials, and discussions with relevant experts and scholars, a total of 23 factors influencing the sustainable supply chain implementation of water diversion projects were identified. Then using ISM (Interpretative Structural Modeling Method) to analyze the causality of each factor, a multi-level hierarchical structure model was obtained. The results showed that: 1) The surface-level influencing factors of the sustaina<span>ble supply chain implementation of the water diversion project mainly i</span>ncluded 8 factors such as water-saving awareness and water-saving intensity in the diversion area, water quality, water pollution and other disasters, effective incentive mechanisms, etc., and surface-level influencing factors were directly related to the sustainable supply chain implementation of water diversio<span>n projects. 2) The indirect influencing factors of the sustainable supply chai</span>n of water diversion projects included 12 factors such as the water quality and quantity guarantee rate of the supply chain, the government’s enforcement of laws and regulations, water distribution, ecological compensation, and compensatio<span>n mechanisms for residents in the water source area. Indirect influencing</span> factor scan acts directly on the direct influencing factors, and int<span>ervening in the factors that can be controlled by humans is one of the important ways to improve the sustainable operation of water diversion proj</span><span>e</span><span>cts. 3) T</span><span>he fundamental influencing factors for the sustainable supply chain implementation of water diversion projects included three f</span>actors: Resettlement policy, government financial support, and sound laws and regulations. Deep influencing factors had multi-channel influence and controllability, and intervening in them was the main means to improve the sustainable operation of water diversion projects.展开更多
In order to study the failure process of an anchorage structure and the evolution law of the body's defor- mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). T...In order to study the failure process of an anchorage structure and the evolution law of the body's defor- mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). The stress distribution of the anchorage interface was investigated using the particle flow numerical simulation method. The results indicate that there are three stages in the deformation and fail- ure process of an anchorage structure: elastic bonding stage, a de-bonding stage and a failure stage. The stress distribution in the interface controls the stability of the structure. In the elastic bonding stage, the shear stress peak point of the interface is close to the loading end, and the displacement field gradually develops into a "V" shape, in the de-bonding stage, there is a shear stress plateau in the center of the anchorage section, and shear strain localization begins to form in the deformation field. In the failure stage, the bonding of the interface fails rapidly and the shear stress peak point moves to the anchorage free end. The anchorage structure moves integrally along the macro-cracl~ The de-bonding stage is a research focus in the deformation and failure process of an anchorage structure, and plays an important guiding role in roadway support design and prediction of the stability of the surrounding rock.展开更多
Using first-principles pseudo-potential plane wave method, the energetics, geometrical and electronic structures of three Al13I cluster isomers were calculated. The calculation results of the binding energy indicate A...Using first-principles pseudo-potential plane wave method, the energetics, geometrical and electronic structures of three Al13I cluster isomers were calculated. The calculation results of the binding energy indicate Al13I cluster is more stable than Al13 cluster although its electrons are not a magic number as in Alia cluster, and among Al13I cluster isomers the "Bridge" structure is the most stable, the second is the "Ontop" structure, and the worst is the "Hollow" structure. By analyzing the geometrical structures of Al13I cluster isomers, it is found that after I atom and Al13 cluster combine the geometrical structures of Al13 moieties are changed besides Al13I Hollow cluster, in which the Alia moiety is still a regular icosahedron. For Al13I Ontop cluster, the Al13 moiety has a shrinking trend to I, whereas in Al13I Bridge cluster it is distorted. Mulliken population analysis shows for the interaction of electrons between Al-I atoms in Al13I cluster not only there exists an ionic bonding but there is a covalent bonding. Part of electrons in the Alia cluster transfer to I as Al13 cluster and I atom combine. The order of the strength of covalent bonding between Al13 moiety and I in Al13I cluster isomers is Al13IBridge〉Al13IHollow〉Al13I Ontop. Further analysis of electric structures of Al13 and Al13I clusters indicates a higher stability of Al13I cluster than Al13 cluster can be attributed to the s-p hybridization of 3s and 3p electrons of Al in Al13 moiety induced by 1 doped, which leads to fewer electrons N(EF) at EF in Al13I and a larger energy gap △EH-L between HOMO and LUMO levels in Al13I cluster. The distinguish of structural stability of Al13I cluster isomers mainly originates from their different magnitudes .in decrease of N(EF) and increase of △EH-L relative to Al13 cluster. The fewest N(EF) and the largest △EH-L are responsible for the high stability of Al13I Bridge cluster.展开更多
This paper presents the theoretical investigation of hierarchical sub-wavelength photonic structures with various periods and numbers of layers, which were fabricated using a high-order waveguide-mode interference fie...This paper presents the theoretical investigation of hierarchical sub-wavelength photonic structures with various periods and numbers of layers, which were fabricated using a high-order waveguide-mode interference field. A 442-nm laser was used to excite high-order waveguide modes in an asymmetric metal-cladding dielectric waveguide structure. The dispersion curve of the waveguide modes was theoretically analyzed, and the distribution of the interference field of high-order waveguide modes was numerically simulated using the finite-element method. The various dependences of the characteristics of hierarchical sub-wavelength photonic structures on the thickness and refractive index of the photoresist and the waveguide mode were investigated in detail. These hierarchical sub-wavelength photonic structures have various periods and numbers of layers and can be fabricated by a simple and low-cost method.展开更多
A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and ...A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and meshing shock excitation, the dynamic finite element model is established for the entire gear system which includes gears, shafts, bearings and gearbox housing. By the software of I-DEAS, the natural frequency, normal mode, dynamic time-domain response, frequency-domain response and one-third octave velocity grade structure borne noise of gear system are studied by the method of theoretical modal analysis and dynamic response analysis. The maximum values of vibration and structure borne noise are occurred at the mesh frequency of output grade gearing.展开更多
A physical value mapping (PVM) algorithm based on finite element mesh from the stamped part in stamping process to the product is presented, In order to improve the efficiency of the PVM algorithm, a search way from...A physical value mapping (PVM) algorithm based on finite element mesh from the stamped part in stamping process to the product is presented, In order to improve the efficiency of the PVM algorithm, a search way from the mesh of the product to the mesh of the stamped part will be adopted. At the same time, the search process is divided into two steps: entire search (ES) and local search (LS), which improve the searching efficiency. The searching area is enlarged to avoid missing projection elements in ES process. An arc-length method is introduced in LS process. The validity is confirmed by the results of the complex industry-forming product.展开更多
Dibenzoyl peroxide undergoes oxidative addition on metallic copper with triphenylphosphine in a mixed solvent(acetone,dichloromethane and trichloromethane),and affords the binuclear copper complex (Cu(C_6H_5COO)_2(OPP...Dibenzoyl peroxide undergoes oxidative addition on metallic copper with triphenylphosphine in a mixed solvent(acetone,dichloromethane and trichloromethane),and affords the binuclear copper complex (Cu(C_6H_5COO)_2(OPPh_3))_2.Crystals are monoclinic,space group A_2/a,with cell parameters,a=24.337(3),b=10.566(1),c=21.579(2),β= 93.18(1)°, V=5540(1)~3,Z=4,R=0.042,and Rw=0.044 for 5872 observed reflections. Each copper ion is coordinated by four bridging benzoato ligands and one triphenylphosphine oxide group to form binuclear complexes.展开更多
In this paper, on the basis of the heat conduction equation without consideration of the advection and turbulence effects, one-dimensional model for describing surface sea temperature ( T1), bottom sea temperature ( T...In this paper, on the basis of the heat conduction equation without consideration of the advection and turbulence effects, one-dimensional model for describing surface sea temperature ( T1), bottom sea temperature ( Tt ) and the thickness of the upper homogeneous layer ( h ) is developed in terms of the dimensionless temperature θT and depth η and self-simulation function θT - f(η) of vertical temperature profile by means of historical temperature data.The results of trial prediction with our one-dimensional model on T, Th, h , the thickness and gradient of thermocline are satisfactory to some extent.展开更多
The molecular geometries,heats of formation and electronic structures of three trinitrobenzenes(1,2,3TNB,1,2,4TNB and 1,3,5TNB)and their chloro derivatives were studied by using the quantum chemical MO AM1 method at t...The molecular geometries,heats of formation and electronic structures of three trinitrobenzenes(1,2,3TNB,1,2,4TNB and 1,3,5TNB)and their chloro derivatives were studied by using the quantum chemical MO AM1 method at the RHF level and ab initio method at the HF/321G level.The decompositions of the title compounds were investigated by using the AM1 method at the UHF level.The decomposition activation energies were obtained and the order of the relative stabilities of the title compounds is found.The substituent effects on the structures and properties and on the decompositions of the title compounds are discussed in the present paper.展开更多
A simple stepwise folding process has been developed to simulate RNA secondary structure formation.Modifications for the energy parameters of various loops were included in the program.Five possible types of pseudokno...A simple stepwise folding process has been developed to simulate RNA secondary structure formation.Modifications for the energy parameters of various loops were included in the program.Five possible types of pseudoknots including the well known H-type pseudoknot were permitted to occur if reasonable.We have applied this approach to e number of RNA sequences.The prediction accuracies we obtained were higher than those in published papers.展开更多
The quantitative relationship between the spin Hamiltonian parameters (D, g|| Ag) and the crystal structure parameters for the Cr3+-Vzη tetragonal defect centre in a Cr3+ :KZnF3 crystal is established by using...The quantitative relationship between the spin Hamiltonian parameters (D, g|| Ag) and the crystal structure parameters for the Cr3+-Vzη tetragonal defect centre in a Cr3+ :KZnF3 crystal is established by using the superposition model. On the above basis, the local structure distortion and the spin Hamiltonian parameter for the Cr3+-Vzn tetragonal defect centre in the KZnF3 crystal are systematically investigated using the complete diagonalization method. It is found that the Vzn vacancy and the differences in mass, radius and charge between the Cr3+ and the Zn2+ ions induce the local lattice distortion of the Cr3+ centre ions in the KZnF3 crystal. The local lattice distortion is shown to give rise to the tetragonal crystal field, which in turn results in the tetragonal zero-field splitting parameter D and the anisotropic g factor Ag. We find that the ligand F- ion along I001] and the other five F- ions move towards the central Cr3+ by distances of A1 = 0.0121 nm and A2 = 0.0026 nm, respectively. Our approach takes into account the spin-rbit interaction as well as the spin-spin, spin other-orbit, and orbit-rbit interactions omitted in the previous studies. It is found that for the Cr3+ ions in the Cr3+:KZnF3 crystal, although the spin-rbit mechanism is the most important one, the contribution to the spin Hamiltonian parameters from the other three mechanisms, including spin- spin, spin-other-orbit, and orbit-orbit magnetic interactions, is appreciable and should not be omitted, especially for the zero-field splitting (ZFS) parameter D.展开更多
In this paper, a kind of rationalism theory of shell is established which is of different mechanic characters in tension and in compression, and the finite element numerical analysis method is also described.
The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of ...The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of the essential boundary condition and derivative of various sensitivities,a singular weight function in element free Galerkin method is introduced.Material point variable is defined to illustrate the condition of material point and its vicinity instead of element or node.The topological variables field is constructed by moving least square approximation which inherits the continuity and smoothness of the weight function.Due to reciprocal relationships between the topological variables and design variables,various structural responses sensitivities are derived according to the method for calculating the partial derivatives of compound functions.Numerical examples indicate that checkerboard pattern and mesh-dependence phenomena are overcome without additional restriction methods.展开更多
A poly vinyl alcohol(PVA) scaffold with aligned porous is strengthened by in-situ combining with TiO2. The increased freezing rate can be used to further increase the strength of aligned porous materials. The streng...A poly vinyl alcohol(PVA) scaffold with aligned porous is strengthened by in-situ combining with TiO2. The increased freezing rate can be used to further increase the strength of aligned porous materials. The strengthened porous PVA exhibits aligned interconnected porous structures and shows a significant enhancement in tensile testing and compression strength testing.展开更多
基金This work was supported by the National Natural Science Foundation of China(52203066,51973157,61904123)the Tianjin Natural Science Foundation(18JCQNJC02900)+3 种基金the National innovation and entrepreneurship training program for college students(202310058007)the Tianjin Municipal college students’innovation and entrepreneurship training program(202310058088)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Grant No.2018KJ196)the State Key Laboratory of Membrane and Membrane Separation,Tiangong University.
文摘Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.
文摘The structure and the acoustic medium of a passenger vehicle are modeled using the finite element method(FEM), and the interior noise is studied the help of the modal synthesis method (MSM). Sound pressure level (Lp) of the noise is calculated in several conditions of the models, and has good agreements with its test results. The MSM am be consequently used for predicting the vehicle interior noise in dssign stage so that the structure may be optimized for the Purpose of the most reduction of noise.
基金supported by the National Natural Science Foundation of China(10472003)Beijing Natural Science(3002002)+1 种基金Beijing Educational Committee Foundations(KM200410005019)Suspensofled by American MSC Company.
文摘ICM (Independent Continuous Mapping) method can solve topological optimization problems with the minimized weight as the objective and subjected to displacement constraints. To get a clearer topological configuration, by introducing the discrete condition of topological variables and integrating with the original objective, an optimal model with multi-objectives is formulated to make the topological variables approach 0 or 1 as near as possible, and the model reduces the effect of deleting rate on the result. The image-filtering method is employed to eliminate the checkerboard patterns and mesh dependence that occurred in the topology optimization of a continuum structure. The computational efficiency is enhanced through selecting quasi-active displacement constraints and a design region. Numerical examples indicate that this algorithm is robust and practicable, though the number of iterations is slightly increased with respect to the original algorithm.
基金supported by the National Natural Science Foundation of China (10732050)Tsinghua University (2009THZ02122)the National Basic Research Program of China (973) (2010CB631005)
文摘As a special type of novel flexible structures, tensegrity holds promise for many potential applications in such fields as materials science, biomechanics, civil and aerospace engineering. Rhombic systems are an important class of tensegrity structures, in which each bar constitutes the longest diagonal of a rhombus of four strings. In this paper, we address the design methods of rhombic structures based on the idea that many tensegrity structures can be constructed by assembling one-bar elementary cells. By analyzing the properties of rhombic cells, we first develop two novel schemes, namely, direct enumeration scheme and cell-substitution scheme. In addition, a facile and efficient method is presented to integrate several rhombic systems into a larger tensegrity structure. To illustrate the applications of these methods, some novel rhombic tensegrity structures are constructed.
基金supported by the Specialized Fund for the Doctoral Program of Higher Education of China (200802131046)China Postdoctoral Science Foundation Funded Major Project (200801290)+1 种基金Development Program of Outstanding Young Teachers in Harbin Institute of Technology (HITQNJS.2008.004)Specialized Fund for Innovation Talents of Science and Technology in Harbin (2008RFQXG057).
文摘This paper extends Le van's work to the case of nonlinear problem and the complicated configuration. The wrinkling stress distribution and the pressure effects are also included in our analysis. Pseudo-beam method is presented based on the inflatable beam theory to model the inflatable structures as a set of inflatable beam elements with a prestressed state. In this method, the discretized nonlinear equations are given based upon the virtual work principle with a 3-node Timoshenko's beam model. Finite element simulation is performed by using a 3-node BEAM189 element incorporating ANSYS nonlinear program. The pressure effect is equivalent included in our method by modifying beam element cross-section parameters related to pressure. A benchmark example, the bending case of an inflatable cantilever beam, is performed to verify the accuracy of our proposed method. The comparisons reveal that the numerical results obtained with our method are close to open published analytical and membrane finite element results. The method is then used to evaluate the whole buckling and the loadcarrying characteristics of an inflatable support frame subjected to a compression force. The wrinkling stress and region characteristics are also shown in the end. This method gives better convergence characteristics, and requires much less computation time. It is very effective to deal with the whole load-carrying ability analytical problems for large scale inflatable structures with complex configuration.
文摘The systematic analysis of the hierarchical relationship among the factors affecting the sustainable supply chain implementation of water diversion projects has theoretical value and practical significance for the sustainable development of large-scale water diversion projects. Through the investigation of relevant literature, books, web pages, materials, and discussions with relevant experts and scholars, a total of 23 factors influencing the sustainable supply chain implementation of water diversion projects were identified. Then using ISM (Interpretative Structural Modeling Method) to analyze the causality of each factor, a multi-level hierarchical structure model was obtained. The results showed that: 1) The surface-level influencing factors of the sustaina<span>ble supply chain implementation of the water diversion project mainly i</span>ncluded 8 factors such as water-saving awareness and water-saving intensity in the diversion area, water quality, water pollution and other disasters, effective incentive mechanisms, etc., and surface-level influencing factors were directly related to the sustainable supply chain implementation of water diversio<span>n projects. 2) The indirect influencing factors of the sustainable supply chai</span>n of water diversion projects included 12 factors such as the water quality and quantity guarantee rate of the supply chain, the government’s enforcement of laws and regulations, water distribution, ecological compensation, and compensatio<span>n mechanisms for residents in the water source area. Indirect influencing</span> factor scan acts directly on the direct influencing factors, and int<span>ervening in the factors that can be controlled by humans is one of the important ways to improve the sustainable operation of water diversion proj</span><span>e</span><span>cts. 3) T</span><span>he fundamental influencing factors for the sustainable supply chain implementation of water diversion projects included three f</span>actors: Resettlement policy, government financial support, and sound laws and regulations. Deep influencing factors had multi-channel influence and controllability, and intervening in them was the main means to improve the sustainable operation of water diversion projects.
基金financially supported by the National Key Basic Research Program of China (No.2010CB226805)the National Natural Science Foundation of China (Nos.51474136 and 51474013)+1 种基金the Opening Project Fund of State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology (No.MDPC2013KF06)the Research Award Fund for the Excellent Youth of Shandong University of Science and Technology (No.2011KYJQ106)
文摘In order to study the failure process of an anchorage structure and the evolution law of the body's defor- mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). The stress distribution of the anchorage interface was investigated using the particle flow numerical simulation method. The results indicate that there are three stages in the deformation and fail- ure process of an anchorage structure: elastic bonding stage, a de-bonding stage and a failure stage. The stress distribution in the interface controls the stability of the structure. In the elastic bonding stage, the shear stress peak point of the interface is close to the loading end, and the displacement field gradually develops into a "V" shape, in the de-bonding stage, there is a shear stress plateau in the center of the anchorage section, and shear strain localization begins to form in the deformation field. In the failure stage, the bonding of the interface fails rapidly and the shear stress peak point moves to the anchorage free end. The anchorage structure moves integrally along the macro-cracl~ The de-bonding stage is a research focus in the deformation and failure process of an anchorage structure, and plays an important guiding role in roadway support design and prediction of the stability of the surrounding rock.
基金This work was supported by the Science & Technology Major Programs of Ministry of Education of China (No. 101139)
文摘Using first-principles pseudo-potential plane wave method, the energetics, geometrical and electronic structures of three Al13I cluster isomers were calculated. The calculation results of the binding energy indicate Al13I cluster is more stable than Al13 cluster although its electrons are not a magic number as in Alia cluster, and among Al13I cluster isomers the "Bridge" structure is the most stable, the second is the "Ontop" structure, and the worst is the "Hollow" structure. By analyzing the geometrical structures of Al13I cluster isomers, it is found that after I atom and Al13 cluster combine the geometrical structures of Al13 moieties are changed besides Al13I Hollow cluster, in which the Alia moiety is still a regular icosahedron. For Al13I Ontop cluster, the Al13 moiety has a shrinking trend to I, whereas in Al13I Bridge cluster it is distorted. Mulliken population analysis shows for the interaction of electrons between Al-I atoms in Al13I cluster not only there exists an ionic bonding but there is a covalent bonding. Part of electrons in the Alia cluster transfer to I as Al13 cluster and I atom combine. The order of the strength of covalent bonding between Al13 moiety and I in Al13I cluster isomers is Al13IBridge〉Al13IHollow〉Al13I Ontop. Further analysis of electric structures of Al13 and Al13I clusters indicates a higher stability of Al13I cluster than Al13 cluster can be attributed to the s-p hybridization of 3s and 3p electrons of Al in Al13 moiety induced by 1 doped, which leads to fewer electrons N(EF) at EF in Al13I and a larger energy gap △EH-L between HOMO and LUMO levels in Al13I cluster. The distinguish of structural stability of Al13I cluster isomers mainly originates from their different magnitudes .in decrease of N(EF) and increase of △EH-L relative to Al13 cluster. The fewest N(EF) and the largest △EH-L are responsible for the high stability of Al13I Bridge cluster.
基金Project supported by the National Natural Science Foundation of China(Grant No.61505074)the National Key Basic Research Program of China(Grant No.2013CBA01703)the Hong Liu Young Teachers Training Program Funded Projects of Lanzhou University of Technology(Grant No.Q201509)
文摘This paper presents the theoretical investigation of hierarchical sub-wavelength photonic structures with various periods and numbers of layers, which were fabricated using a high-order waveguide-mode interference field. A 442-nm laser was used to excite high-order waveguide modes in an asymmetric metal-cladding dielectric waveguide structure. The dispersion curve of the waveguide modes was theoretically analyzed, and the distribution of the interference field of high-order waveguide modes was numerically simulated using the finite-element method. The various dependences of the characteristics of hierarchical sub-wavelength photonic structures on the thickness and refractive index of the photoresist and the waveguide mode were investigated in detail. These hierarchical sub-wavelength photonic structures have various periods and numbers of layers and can be fabricated by a simple and low-cost method.
基金Funded by the Natural Science Foundation of China (No. 50675232)the Natural Science Foundation of CQ CSTC (2006BB3008)
文摘A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and meshing shock excitation, the dynamic finite element model is established for the entire gear system which includes gears, shafts, bearings and gearbox housing. By the software of I-DEAS, the natural frequency, normal mode, dynamic time-domain response, frequency-domain response and one-third octave velocity grade structure borne noise of gear system are studied by the method of theoretical modal analysis and dynamic response analysis. The maximum values of vibration and structure borne noise are occurred at the mesh frequency of output grade gearing.
基金This project is supported by National Natural Science Foundation ofChina(No.l9832020) and National Outstanding Youth Science Foundation ofChina(No.10125208).
文摘A physical value mapping (PVM) algorithm based on finite element mesh from the stamped part in stamping process to the product is presented, In order to improve the efficiency of the PVM algorithm, a search way from the mesh of the product to the mesh of the stamped part will be adopted. At the same time, the search process is divided into two steps: entire search (ES) and local search (LS), which improve the searching efficiency. The searching area is enlarged to avoid missing projection elements in ES process. An arc-length method is introduced in LS process. The validity is confirmed by the results of the complex industry-forming product.
文摘Dibenzoyl peroxide undergoes oxidative addition on metallic copper with triphenylphosphine in a mixed solvent(acetone,dichloromethane and trichloromethane),and affords the binuclear copper complex (Cu(C_6H_5COO)_2(OPPh_3))_2.Crystals are monoclinic,space group A_2/a,with cell parameters,a=24.337(3),b=10.566(1),c=21.579(2),β= 93.18(1)°, V=5540(1)~3,Z=4,R=0.042,and Rw=0.044 for 5872 observed reflections. Each copper ion is coordinated by four bridging benzoato ligands and one triphenylphosphine oxide group to form binuclear complexes.
文摘In this paper, on the basis of the heat conduction equation without consideration of the advection and turbulence effects, one-dimensional model for describing surface sea temperature ( T1), bottom sea temperature ( Tt ) and the thickness of the upper homogeneous layer ( h ) is developed in terms of the dimensionless temperature θT and depth η and self-simulation function θT - f(η) of vertical temperature profile by means of historical temperature data.The results of trial prediction with our one-dimensional model on T, Th, h , the thickness and gradient of thermocline are satisfactory to some extent.
文摘The molecular geometries,heats of formation and electronic structures of three trinitrobenzenes(1,2,3TNB,1,2,4TNB and 1,3,5TNB)and their chloro derivatives were studied by using the quantum chemical MO AM1 method at the RHF level and ab initio method at the HF/321G level.The decompositions of the title compounds were investigated by using the AM1 method at the UHF level.The decomposition activation energies were obtained and the order of the relative stabilities of the title compounds is found.The substituent effects on the structures and properties and on the decompositions of the title compounds are discussed in the present paper.
文摘A simple stepwise folding process has been developed to simulate RNA secondary structure formation.Modifications for the energy parameters of various loops were included in the program.Five possible types of pseudoknots including the well known H-type pseudoknot were permitted to occur if reasonable.We have applied this approach to e number of RNA sequences.The prediction accuracies we obtained were higher than those in published papers.
基金Projects supported by the Natural Science Foundation of Shaanxi Province,China (Grant No.2010JM1015)the Special Scientific Program of the Education Department of Shaanxi Province,China (Grant No.11JK0537)the Baoji University of Arts and Sciences Key Research,China (Grant No.ZK0842)
文摘The quantitative relationship between the spin Hamiltonian parameters (D, g|| Ag) and the crystal structure parameters for the Cr3+-Vzη tetragonal defect centre in a Cr3+ :KZnF3 crystal is established by using the superposition model. On the above basis, the local structure distortion and the spin Hamiltonian parameter for the Cr3+-Vzn tetragonal defect centre in the KZnF3 crystal are systematically investigated using the complete diagonalization method. It is found that the Vzn vacancy and the differences in mass, radius and charge between the Cr3+ and the Zn2+ ions induce the local lattice distortion of the Cr3+ centre ions in the KZnF3 crystal. The local lattice distortion is shown to give rise to the tetragonal crystal field, which in turn results in the tetragonal zero-field splitting parameter D and the anisotropic g factor Ag. We find that the ligand F- ion along I001] and the other five F- ions move towards the central Cr3+ by distances of A1 = 0.0121 nm and A2 = 0.0026 nm, respectively. Our approach takes into account the spin-rbit interaction as well as the spin-spin, spin other-orbit, and orbit-rbit interactions omitted in the previous studies. It is found that for the Cr3+ ions in the Cr3+:KZnF3 crystal, although the spin-rbit mechanism is the most important one, the contribution to the spin Hamiltonian parameters from the other three mechanisms, including spin- spin, spin-other-orbit, and orbit-orbit magnetic interactions, is appreciable and should not be omitted, especially for the zero-field splitting (ZFS) parameter D.
文摘In this paper, a kind of rationalism theory of shell is established which is of different mechanic characters in tension and in compression, and the finite element numerical analysis method is also described.
基金Sponsored by the Ministerial Level Advanced Research Foundation (010896367)
文摘The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of the essential boundary condition and derivative of various sensitivities,a singular weight function in element free Galerkin method is introduced.Material point variable is defined to illustrate the condition of material point and its vicinity instead of element or node.The topological variables field is constructed by moving least square approximation which inherits the continuity and smoothness of the weight function.Due to reciprocal relationships between the topological variables and design variables,various structural responses sensitivities are derived according to the method for calculating the partial derivatives of compound functions.Numerical examples indicate that checkerboard pattern and mesh-dependence phenomena are overcome without additional restriction methods.
基金Supported by the Northwestern Polytechnical University under Grant No 158-QP-2016the Natural Science Basic Research Plan of Shaanxi Province under Grant No 2017JM5112
文摘A poly vinyl alcohol(PVA) scaffold with aligned porous is strengthened by in-situ combining with TiO2. The increased freezing rate can be used to further increase the strength of aligned porous materials. The strengthened porous PVA exhibits aligned interconnected porous structures and shows a significant enhancement in tensile testing and compression strength testing.