Seeing is an important index to evaluate the quality of an astronomical site.To estimate seeing at the Muztagh-Ata site with height and time quantitatively,the European Centre for Medium-Range Weather Forecasts reanal...Seeing is an important index to evaluate the quality of an astronomical site.To estimate seeing at the Muztagh-Ata site with height and time quantitatively,the European Centre for Medium-Range Weather Forecasts reanalysis database(ERA5)is used.Seeing calculated from ERA5 is compared consistently with the Differential Image Motion Monitor seeing at the height of 12 m.Results show that seeing decays exponentially with height at the Muztagh-Ata site.Seeing decays the fastest in fall in 2021 and most slowly with height in summer.The seeing condition is better in fall than in summer.The median value of seeing at 12 m is 0.89 arcsec,the maximum value is1.21 arcsec in August and the minimum is 0.66 arcsec in October.The median value of seeing at 12 m is 0.72arcsec in the nighttime and 1.08 arcsec in the daytime.Seeing is a combination of annual and about biannual variations with the same phase as temperature and wind speed indicating that seeing variation with time is influenced by temperature and wind speed.The Richardson number Ri is used to analyze the atmospheric stability and the variations of seeing are consistent with Ri between layers.These quantitative results can provide an important reference for a telescopic observation strategy.展开更多
In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When...In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When the target geology structure is significantly complicated, these parameters would fail to reflect the nature of the anomaly source, and wrong conclusions may be obtained. A wavelet approach and a metal factor method were used to comprehensively interpret the induced polarization anomaly of complex geologic bodies in the Adi Bladia mine. Db5 wavelet basis was used to conduct two-scale decomposition and reconstruction, which effectively suppress the noise interference of greenschist facies regional metamorphism and magma intrusion, making energy concentrated and boundary problem unobservable. On the basis of that, the ore-induced anomaly was effectively extracted by the metal factor method.展开更多
Very low frequency(VLF)signals are propagated between the ground-ionosphere.Multimode interference will cause the phase to show oscillatory changes with distance while propagating at night,leading to abnormalities in ...Very low frequency(VLF)signals are propagated between the ground-ionosphere.Multimode interference will cause the phase to show oscillatory changes with distance while propagating at night,leading to abnormalities in the received VLF signal.This study uses the VLF signal received in Qingdao City,Shandong Province,from the Russian Alpha navigation system to explore the multimode interference problem of VLF signal propagation.The characteristics of the effect of multimode interference phenomena on the phase are analyzed according to the variation of the phase of the VLF signal.However,the phase of VLF signals will also be affected by the X-ray and energetic particles that are released during the eruption of solar flares,therefore the two phenomena are studied in this work.It is concluded that the X-ray will not affect the phase of VLF signals at night,but the energetic particles will affect the phase change,and the influence of energetic particles should be excluded in the study of multimode interference phenomena.Using VLF signals for navigation positioning in degraded or unavailable GPS conditions is of great practical significance for VLF navigation systems as it can avoid the influence of multimode interference and improve positioning accuracy.展开更多
It is difficult to detect the anomalies whose matching relationship among some data attributes is very different from others’ in a dataset. Aiming at this problem, an approach based on wavelet analysis for detecting ...It is difficult to detect the anomalies whose matching relationship among some data attributes is very different from others’ in a dataset. Aiming at this problem, an approach based on wavelet analysis for detecting and amending anomalous samples was proposed. Taking full advantage of wavelet analysis’ properties of multi-resolution and local analysis, this approach is able to detect and amend anomalous samples effectively. To realize the rapid numeric computation of wavelet translation for a discrete sequence, a modified algorithm based on Newton-Cores formula was also proposed. The experimental result shows that the approach is feasible with good result and good practicality.展开更多
Temporal activity patterns in animals emerge from complex interactions between choices made by organisms as responses to biotic interactions and challenges posed by external factors. Temporal activity pattern is an in...Temporal activity patterns in animals emerge from complex interactions between choices made by organisms as responses to biotic interactions and challenges posed by external factors. Temporal activity pattern is an inherently continuous process, even being recorded as a time series. The discreteness of the data set is clearly due to data-acquisition limitations rather than a true underlying discrete nature of the phenomenon itself. Therefore, curves are a natural representation for high-frequency data. Here, we fully model temporal activity data as curves integrating wavelets and functional data analysis, allowing for testing hypotheses based on curves rather than on scalar and vector-valued data. Temporal activity data were obtained experimentally for males and females of a small-bodied marsupial and modelled as wavelets with independent and identically distributed errors and dependent errors. The null hypothesis of no difference in temporal activity pattern between male and female curves was tested with functional analysis of variance (FANOVA). The null hypothesis was rejected by FANOVA and we discussed the differences in temporal activity pattern curves between males and females in terms of ecological and life-history attributes of the reference species. We also performed numerical analysis that shed light on the regularity properties of the wavelet bases used and the thresholding parameters.展开更多
Mitigating increasing cyberattack incidents may require strategies such as reinforcing organizations’ networks with Honeypots and effectively analyzing attack traffic for detection of zero-day attacks and vulnerabili...Mitigating increasing cyberattack incidents may require strategies such as reinforcing organizations’ networks with Honeypots and effectively analyzing attack traffic for detection of zero-day attacks and vulnerabilities. To effectively detect and mitigate cyberattacks, both computerized and visual analyses are typically required. However, most security analysts are not adequately trained in visualization principles and/or methods, which is required for effective visual perception of useful attack information hidden in attack data. Additionally, Honeypot has proven useful in cyberattack research, but no studies have comprehensively investigated visualization practices in the field. In this paper, we reviewed visualization practices and methods commonly used in the discovery and communication of attack patterns based on Honeypot network traffic data. Using the PRISMA methodology, we identified and screened 218 papers and evaluated only 37 papers having a high impact. Most Honeypot papers conducted summary statistics of Honeypot data based on static data metrics such as IP address, port, and packet size. They visually analyzed Honeypot attack data using simple graphical methods (such as line, bar, and pie charts) that tend to hide useful attack information. Furthermore, only a few papers conducted extended attack analysis, and commonly visualized attack data using scatter and linear plots. Papers rarely included simple yet sophisticated graphical methods, such as box plots and histograms, which allow for critical evaluation of analysis results. While a significant number of automated visualization tools have incorporated visualization standards by default, the construction of effective and expressive graphical methods for easy pattern discovery and explainable insights still requires applied knowledge and skill of visualization principles and tools, and occasionally, an interdisciplinary collaboration with peers. We, therefore, suggest the need, going forward, for non-classical graphical methods for visualizing attack patterns and communicating analysis results. We also recommend training investigators in visualization principles and standards for effective visual perception and presentation.展开更多
The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral ...The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral analysis method is proposed in this study.In this method,overlapping peaks are located using a continuous wavelet transform.An improved quadratic convolution method is proposed to calculate the widths of the peaks and establish a fourth-order filter model to estimate the Compton edge baseline with the overlapping peaks.Combined with the adaptive sensitive nonlinear iterative peak,this method can effectively subtracts the background.Finally,a function describing the peak shape as a filter is used to deconvolve the energy spectrum to achieve accurate qualitative and quantitative analyses of the nuclide without the aid of a nuclide library.Gamma spectrum acquisition experiments for standard point sources of Cs-137 and Eu-152,a segmented gamma scanning experiment for a 200 L standard drum,and a Monte Carlo simulation experiment for triple overlapping peaks using the closest energy of three typical LILW nuclides(Sb-125,Sb-124,and Cs-134)are conducted.The results of the experiments indicate that(1)the novel method and gamma vision(GV)with an accurate nuclide library have the same spectral analysis capability,and the peak area calculation error is less than 4%;(2)compared with the GV,the analysis results of the novel method are more stable;(3)the novel method can be applied to the activity measurement of LILW,and the error of the activity reconstruction at the equivalent radius is 2.4%;and(4)The proposed novel method can quantitatively analyze all nuclides in LILW without a nuclide library.This novel method can improve the accuracy and precision of LILW measurements,provide key technical support for the reasonable disposal of LILW,and ensure the safety of humans and the environment.展开更多
The buildings and structures of mines were monitored automatically using modern surveying technology. Through the analysis of the monitoring data, the deformation characteristics were found out from three aspects cont...The buildings and structures of mines were monitored automatically using modern surveying technology. Through the analysis of the monitoring data, the deformation characteristics were found out from three aspects containing points, lines and regions, which play an important role in understanding the stable state of buildings and structures. The stability and deformation of monitoring points were analysed, and time-series data of monitoring points were denoised with wavelet analysis and Kalman filtering, and exponent function and periodic function were used to get the ideal deformation trend model of monitoring points. Through calculating the monitoring data obtained, analyzing the deformation trend, and cognizing the deformation regularity, it can better service mine safety production and decision-making.展开更多
Interference in the data of geochemical hydrocarbon exploration is a large obstacle for anomaly recognition. The multiresolution analysis of wavelet analysis can extract the information at different scales so as to pr...Interference in the data of geochemical hydrocarbon exploration is a large obstacle for anomaly recognition. The multiresolution analysis of wavelet analysis can extract the information at different scales so as to provide a powerful tool for information analysis and processing. Based on the analysis of the geometric nature of hydrocarbon anomalies and background, Mallat wavelet and symmetric border treatment are selected and data pre-processing (logarithm-normalization) is established. This approach provide good results in Shandong and Inner Mongolia, China. It is demonstrated that this approach overcome the disadvantage of backgound variation in the window (interference in window), used in moving average, frame filtering and spatial and scaling modeling methods.展开更多
Properties of the Schwabe cycles in solar activity are investigated by using wavelet transform. We study the main range of the Schwabe cycles of the solar activity recorded by relative sunspot numbers, and find that t...Properties of the Schwabe cycles in solar activity are investigated by using wavelet transform. We study the main range of the Schwabe cycles of the solar activity recorded by relative sunspot numbers, and find that the main range of the Schwabe cycles is the periodic span from 8-year to 14-year. We make the comparison of 11-year’s phase between relative sunspot numbers and sunspot group numbers. The results show that there is some difference between two phases for the interval from 1710 to 1810, while the two phases are almost the same for the interval from 1810 to 1990.展开更多
A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and vi...A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and virtual work principle,the formulations of the bending and free vibration problems of the stiffened plate are derived separately.Then,the scaling functions of the B-spline wavelet on the interval(BSWI)are introduced to discrete the solving field variables instead of conventional polynomial interpolation.Finally,the corresponding two problems can be resolved following the traditional finite element frame.There are some advantages of the constructed elements in structural analysis.Due to the excellent features of the wavelet,such as multi-scale and localization characteristics,and the excellent numerical approximation property of the BSWI,the precise and efficient analysis can be achieved.Besides,transformation matrix is used to translate the meaningless wavelet coefficients into physical space,thus the resolving process is simplified.In order to verify the superiority of the constructed method in stiffened plate analysis,several numerical examples are given in the end.展开更多
Space debris poses a serious threat to human space activities and needs to be measured and cataloged. As a new technology for space target surveillance, the measurement accuracy of diffuse reflection laser ranging (D...Space debris poses a serious threat to human space activities and needs to be measured and cataloged. As a new technology for space target surveillance, the measurement accuracy of diffuse reflection laser ranging (DRLR) is much higher than that of microwave radar and optoelectronic measurement. Based on the laser ranging data of space debris from the DRLR system at Shanghai Astronomical Observatory acquired in March-April, 2013, the characteristics and precision of the laser ranging data are analyzed and their applications in orbit determination of space debris are discussed, which is implemented for the first time in China. The experiment indicates that the precision of laser ranging data can reach 39 cm-228 cm. When the data are sufficient enough (four arcs measured over three days), the orbital accuracy of space debris can be up to 50 m.展开更多
This paper establishes the phase space in the light of spacial series data , discusses the fractal structure of geological data in terms of correlated functions and studies the chaos of these data . In addition , it i...This paper establishes the phase space in the light of spacial series data , discusses the fractal structure of geological data in terms of correlated functions and studies the chaos of these data . In addition , it introduces the R/S analysis for time series analysis into spacial series to calculate the structural fractal dimensions of ranges and standard deviation for spacial series data -and to establish the fractal dimension matrix and the procedures in plotting the fractal dimension anomaly diagram with vector distances of fractal dimension . At last , it has examples of its application .展开更多
We investigate the wavelet transform of yearly mean relative sunspot number series from 1700 to 2002. The curve of the global wavelet power spectrum peaks at 11-yr, 53-yr and 101-yr periods. The evolution of the ampli...We investigate the wavelet transform of yearly mean relative sunspot number series from 1700 to 2002. The curve of the global wavelet power spectrum peaks at 11-yr, 53-yr and 101-yr periods. The evolution of the amplitudes of the three periods is studied. The results show that around 1750 and 1800, the amplitude of the 53-yr period was much higher than that of the the 11-yr period, that the ca. 53-yr period was apparent only for the interval from 1725 to 1850, and was very low after 1850, that around 1750, 1800 and 1900, the amplitude of the 101-yr period was higher than that of the 11-yr period and that, from 1940 to 2000, the 11-yr period greatly dominates over the other two periods.展开更多
The extraction of high-temperature regions in active regions(ARs)is an important means to help understand the mechanism of coronal heating.The important observational means of high-temperature radiation in ARs is the ...The extraction of high-temperature regions in active regions(ARs)is an important means to help understand the mechanism of coronal heating.The important observational means of high-temperature radiation in ARs is the main emission line of Fe XVⅢin the 94?of the Atmospheric Imaging Assembly.However,the diagnostic algorithms for Fe XVⅢ,including the differential emission measure(DEM)and linear diagnostics proposed by Del based on the DEM,have been greatly limited for a long time,and the results obtained are different from the predictions.In this paper,we use the outlier detection method to establish the nonlinear correlation between 94?and 171,193,211?based on the former researches by others.A neural network based on 171,193,211?is constructed to replace the low-temperature emission lines in the ARs of 94?.The predicted results are regarded as the low-temperature components of 94?,and then the predicted results are subtracted from 94?to obtain the outlier component of 94?,or Fe XVⅢ.Then,the outlier components obtained by neural network are compared with the Fe XVⅢobtained by DEM and Del's method,and a high similarity is found,which proves the reliability of neural network to obtain the high-temperature components of ARs,but there are still many differences.In order to analyze the differences between the Fe XVⅢobtained by the three methods,we subtract the Fe XVⅢobtained by the DEM and Del's method from the Fe XVⅢobtained by the neural network to obtain the residual value,and compare it with the results of Fe XIV in the temperature range of 6.1-6.45 MK.It is found that there is a great similarity,which also shows that the Fe XVⅢobtained by DEM and Del's method still has a large low-temperature component dominated by Fe XIV,and the Fe XVⅢobtained by neural network is relatively pure.展开更多
The COVID-19 pandemic has spread globally,resulting in financialinstability in many countries and reductions in the per capita grossdomestic product.Sentiment analysis is a cost-effective method for acquiringsentiment...The COVID-19 pandemic has spread globally,resulting in financialinstability in many countries and reductions in the per capita grossdomestic product.Sentiment analysis is a cost-effective method for acquiringsentiments based on household income loss,as expressed on social media.However,limited research has been conducted in this domain using theLexDeep approach.This study aimed to explore social trend analytics usingLexDeep,which is a hybrid sentiment analysis technique,on Twitter to capturethe risk of household income loss during the COVID-19 pandemic.First,tweet data were collected using Twint with relevant keywords before(9 March2019 to 17 March 2020)and during(18 March 2020 to 21 August 2021)thepandemic.Subsequently,the tweets were annotated using VADER(lexiconbased)and fed into deep learning classifiers,and experiments were conductedusing several embeddings,namely simple embedding,Global Vectors,andWord2Vec,to classify the sentiments expressed in the tweets.The performanceof each LexDeep model was evaluated and compared with that of a supportvector machine(SVM).Finally,the unemployment rates before and duringCOVID-19 were analysed to gain insights into the differences in unemploymentpercentages through social media input and analysis.The resultsdemonstrated that all LexDeep models with simple embedding outperformedthe SVM.This confirmed the superiority of the proposed LexDeep modelover a classical machine learning classifier in performing sentiment analysistasks for domain-specific sentiments.In terms of the risk of income loss,the unemployment issue is highly politicised on both the regional and globalscales;thus,if a country cannot combat this issue,the global economy will alsobe affected.Future research should develop a utility maximisation algorithmfor household welfare evaluation,given the percentage risk of income lossowing to COVID-19.展开更多
Method development has always been and will continue to be a core driving force of microbiome science, In this perspective, we argue that in the next decade, method development in microbiome analysis will be driven by...Method development has always been and will continue to be a core driving force of microbiome science, In this perspective, we argue that in the next decade, method development in microbiome analysis will be driven by three key changes in both ways of thinking and technological platforms: ① a shift from dissecting microbiota structure by sequencing to tracking microbiota state, function, and intercellular interaction via imaging; ② a shift from interrogating a consortium or population of cells to probing individual cells; and ③a shift from microbiome data analysis to microbiome data science. Some of the recent methoddevelopment efforts by Chinese microbiome scientists and their international collaborators that underlie these technological trends are highlighted here. It is our belief that the China Microbiome Initiative has the opportunity to deliver outstanding "Made-in-China" tools to the international research community, by building an ambitious, competitive, and collaborative program at the forefront of method development for microbiome science.展开更多
The scientific satellite SST (Space Solar Telescope) is an important research project strongly supported by the Chinese Academy of Sciences. Every day, SST acquires 50 GB of data (after processing) but only 10GB can b...The scientific satellite SST (Space Solar Telescope) is an important research project strongly supported by the Chinese Academy of Sciences. Every day, SST acquires 50 GB of data (after processing) but only 10GB can be transmitted to the ground because of limited time of satellite passage and limited channel volume. Therefore, the data must be compressed before transmission. Wavelets analysis is a new technique developed over the last 10 years, with great potential of application. We start with a brief introduction to the essential principles of wavelet analysis, and then describe the main idea of embedded zerotree wavelet coding, used for compressing the SST images. The results show that this coding is adequate for the job.展开更多
High-precision polar motion prediction is of great significance for deep space exploration and satellite navigation.Polar motion is affected by a variety of excitation factors,and nonlinear prediction methods are more...High-precision polar motion prediction is of great significance for deep space exploration and satellite navigation.Polar motion is affected by a variety of excitation factors,and nonlinear prediction methods are more suitable for polar motion prediction.In order to explore the effect of deep learning in polar motion prediction.This paper proposes a combined model based on empirical wavelet transform(EWT),Convolutional Neural Networks(CNN)and Long Short Term Memory(LSTM).By training and forecasting EOP 20C04 data,the effectiveness of the algorithm is verified,and the performance of two forecasting strategies in deep learning for polar motion prediction is explored.The results indicate that recursive multi-step prediction performs better than direct multi-step prediction for short-term forecasts within 15 days,while direct multi-step prediction is more suitable for medium and long-term forecasts.In the 365 days forecast,the mean absolute error of EWT-CNN-LSTM in the X direction and Y direction is 18.25 mas and 15.78 mas,respectively,which is 23.5% and 16.2% higher than the accuracy of Bulletin A.The results show that the algorithm has a good effect in medium and long term polar motion prediction.展开更多
Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometri...Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results.展开更多
基金funded by the National Natural Science Foundation of China(NSFC)the Chinese Academy of Sciences(CAS)(grant No.U2031209)the National Natural Science Foundation of China(NSFC,grant Nos.11872128,42174192,and 91952111)。
文摘Seeing is an important index to evaluate the quality of an astronomical site.To estimate seeing at the Muztagh-Ata site with height and time quantitatively,the European Centre for Medium-Range Weather Forecasts reanalysis database(ERA5)is used.Seeing calculated from ERA5 is compared consistently with the Differential Image Motion Monitor seeing at the height of 12 m.Results show that seeing decays exponentially with height at the Muztagh-Ata site.Seeing decays the fastest in fall in 2021 and most slowly with height in summer.The seeing condition is better in fall than in summer.The median value of seeing at 12 m is 0.89 arcsec,the maximum value is1.21 arcsec in August and the minimum is 0.66 arcsec in October.The median value of seeing at 12 m is 0.72arcsec in the nighttime and 1.08 arcsec in the daytime.Seeing is a combination of annual and about biannual variations with the same phase as temperature and wind speed indicating that seeing variation with time is influenced by temperature and wind speed.The Richardson number Ri is used to analyze the atmospheric stability and the variations of seeing are consistent with Ri between layers.These quantitative results can provide an important reference for a telescopic observation strategy.
基金Project(41174103)supported by the National Natural Science Foundation of ChinaProject(2010-211)supported by the Foreign Mineral Resources Venture Exploration Special Fund of China
文摘In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When the target geology structure is significantly complicated, these parameters would fail to reflect the nature of the anomaly source, and wrong conclusions may be obtained. A wavelet approach and a metal factor method were used to comprehensively interpret the induced polarization anomaly of complex geologic bodies in the Adi Bladia mine. Db5 wavelet basis was used to conduct two-scale decomposition and reconstruction, which effectively suppress the noise interference of greenschist facies regional metamorphism and magma intrusion, making energy concentrated and boundary problem unobservable. On the basis of that, the ore-induced anomaly was effectively extracted by the metal factor method.
基金supported by the National Natural Science Foundation of China(U1704134)。
文摘Very low frequency(VLF)signals are propagated between the ground-ionosphere.Multimode interference will cause the phase to show oscillatory changes with distance while propagating at night,leading to abnormalities in the received VLF signal.This study uses the VLF signal received in Qingdao City,Shandong Province,from the Russian Alpha navigation system to explore the multimode interference problem of VLF signal propagation.The characteristics of the effect of multimode interference phenomena on the phase are analyzed according to the variation of the phase of the VLF signal.However,the phase of VLF signals will also be affected by the X-ray and energetic particles that are released during the eruption of solar flares,therefore the two phenomena are studied in this work.It is concluded that the X-ray will not affect the phase of VLF signals at night,but the energetic particles will affect the phase change,and the influence of energetic particles should be excluded in the study of multimode interference phenomena.Using VLF signals for navigation positioning in degraded or unavailable GPS conditions is of great practical significance for VLF navigation systems as it can avoid the influence of multimode interference and improve positioning accuracy.
基金Project(50374079) supported by the National Natural Science Foundation of China
文摘It is difficult to detect the anomalies whose matching relationship among some data attributes is very different from others’ in a dataset. Aiming at this problem, an approach based on wavelet analysis for detecting and amending anomalous samples was proposed. Taking full advantage of wavelet analysis’ properties of multi-resolution and local analysis, this approach is able to detect and amend anomalous samples effectively. To realize the rapid numeric computation of wavelet translation for a discrete sequence, a modified algorithm based on Newton-Cores formula was also proposed. The experimental result shows that the approach is feasible with good result and good practicality.
文摘Temporal activity patterns in animals emerge from complex interactions between choices made by organisms as responses to biotic interactions and challenges posed by external factors. Temporal activity pattern is an inherently continuous process, even being recorded as a time series. The discreteness of the data set is clearly due to data-acquisition limitations rather than a true underlying discrete nature of the phenomenon itself. Therefore, curves are a natural representation for high-frequency data. Here, we fully model temporal activity data as curves integrating wavelets and functional data analysis, allowing for testing hypotheses based on curves rather than on scalar and vector-valued data. Temporal activity data were obtained experimentally for males and females of a small-bodied marsupial and modelled as wavelets with independent and identically distributed errors and dependent errors. The null hypothesis of no difference in temporal activity pattern between male and female curves was tested with functional analysis of variance (FANOVA). The null hypothesis was rejected by FANOVA and we discussed the differences in temporal activity pattern curves between males and females in terms of ecological and life-history attributes of the reference species. We also performed numerical analysis that shed light on the regularity properties of the wavelet bases used and the thresholding parameters.
文摘Mitigating increasing cyberattack incidents may require strategies such as reinforcing organizations’ networks with Honeypots and effectively analyzing attack traffic for detection of zero-day attacks and vulnerabilities. To effectively detect and mitigate cyberattacks, both computerized and visual analyses are typically required. However, most security analysts are not adequately trained in visualization principles and/or methods, which is required for effective visual perception of useful attack information hidden in attack data. Additionally, Honeypot has proven useful in cyberattack research, but no studies have comprehensively investigated visualization practices in the field. In this paper, we reviewed visualization practices and methods commonly used in the discovery and communication of attack patterns based on Honeypot network traffic data. Using the PRISMA methodology, we identified and screened 218 papers and evaluated only 37 papers having a high impact. Most Honeypot papers conducted summary statistics of Honeypot data based on static data metrics such as IP address, port, and packet size. They visually analyzed Honeypot attack data using simple graphical methods (such as line, bar, and pie charts) that tend to hide useful attack information. Furthermore, only a few papers conducted extended attack analysis, and commonly visualized attack data using scatter and linear plots. Papers rarely included simple yet sophisticated graphical methods, such as box plots and histograms, which allow for critical evaluation of analysis results. While a significant number of automated visualization tools have incorporated visualization standards by default, the construction of effective and expressive graphical methods for easy pattern discovery and explainable insights still requires applied knowledge and skill of visualization principles and tools, and occasionally, an interdisciplinary collaboration with peers. We, therefore, suggest the need, going forward, for non-classical graphical methods for visualizing attack patterns and communicating analysis results. We also recommend training investigators in visualization principles and standards for effective visual perception and presentation.
基金supported by the National Natural Science Foundation of China(Nos.12205190,11805121)the Science and Technology Commission of Shanghai Municipality(No.21ZR1435400).
文摘The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral analysis method is proposed in this study.In this method,overlapping peaks are located using a continuous wavelet transform.An improved quadratic convolution method is proposed to calculate the widths of the peaks and establish a fourth-order filter model to estimate the Compton edge baseline with the overlapping peaks.Combined with the adaptive sensitive nonlinear iterative peak,this method can effectively subtracts the background.Finally,a function describing the peak shape as a filter is used to deconvolve the energy spectrum to achieve accurate qualitative and quantitative analyses of the nuclide without the aid of a nuclide library.Gamma spectrum acquisition experiments for standard point sources of Cs-137 and Eu-152,a segmented gamma scanning experiment for a 200 L standard drum,and a Monte Carlo simulation experiment for triple overlapping peaks using the closest energy of three typical LILW nuclides(Sb-125,Sb-124,and Cs-134)are conducted.The results of the experiments indicate that(1)the novel method and gamma vision(GV)with an accurate nuclide library have the same spectral analysis capability,and the peak area calculation error is less than 4%;(2)compared with the GV,the analysis results of the novel method are more stable;(3)the novel method can be applied to the activity measurement of LILW,and the error of the activity reconstruction at the equivalent radius is 2.4%;and(4)The proposed novel method can quantitatively analyze all nuclides in LILW without a nuclide library.This novel method can improve the accuracy and precision of LILW measurements,provide key technical support for the reasonable disposal of LILW,and ensure the safety of humans and the environment.
基金Project(40771175)supported by the National Nature Science Foundation of China
文摘The buildings and structures of mines were monitored automatically using modern surveying technology. Through the analysis of the monitoring data, the deformation characteristics were found out from three aspects containing points, lines and regions, which play an important role in understanding the stable state of buildings and structures. The stability and deformation of monitoring points were analysed, and time-series data of monitoring points were denoised with wavelet analysis and Kalman filtering, and exponent function and periodic function were used to get the ideal deformation trend model of monitoring points. Through calculating the monitoring data obtained, analyzing the deformation trend, and cognizing the deformation regularity, it can better service mine safety production and decision-making.
文摘Interference in the data of geochemical hydrocarbon exploration is a large obstacle for anomaly recognition. The multiresolution analysis of wavelet analysis can extract the information at different scales so as to provide a powerful tool for information analysis and processing. Based on the analysis of the geometric nature of hydrocarbon anomalies and background, Mallat wavelet and symmetric border treatment are selected and data pre-processing (logarithm-normalization) is established. This approach provide good results in Shandong and Inner Mongolia, China. It is demonstrated that this approach overcome the disadvantage of backgound variation in the window (interference in window), used in moving average, frame filtering and spatial and scaling modeling methods.
基金the National Natural Science Foundation of China.
文摘Properties of the Schwabe cycles in solar activity are investigated by using wavelet transform. We study the main range of the Schwabe cycles of the solar activity recorded by relative sunspot numbers, and find that the main range of the Schwabe cycles is the periodic span from 8-year to 14-year. We make the comparison of 11-year’s phase between relative sunspot numbers and sunspot group numbers. The results show that there is some difference between two phases for the interval from 1710 to 1810, while the two phases are almost the same for the interval from 1810 to 1990.
基金This work was supported by the National Natural Science Foundation of China(Nos.51405370&51421004)the National Key Basic Research Program of China(No.2015CB057400)+2 种基金the project supported by Natural Science Basic Plan in Shaanxi Province of China(No.2015JQ5184)the Fundamental Research Funds for the Central Universities(xjj2014014)Shaanxi Province Postdoctoral Research Project.
文摘A new wavelet finite element method(WFEM)is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed.By means of generalized potential energy function and virtual work principle,the formulations of the bending and free vibration problems of the stiffened plate are derived separately.Then,the scaling functions of the B-spline wavelet on the interval(BSWI)are introduced to discrete the solving field variables instead of conventional polynomial interpolation.Finally,the corresponding two problems can be resolved following the traditional finite element frame.There are some advantages of the constructed elements in structural analysis.Due to the excellent features of the wavelet,such as multi-scale and localization characteristics,and the excellent numerical approximation property of the BSWI,the precise and efficient analysis can be achieved.Besides,transformation matrix is used to translate the meaningless wavelet coefficients into physical space,thus the resolving process is simplified.In order to verify the superiority of the constructed method in stiffened plate analysis,several numerical examples are given in the end.
基金Supported by the National Natural Science Foundation of China
文摘Space debris poses a serious threat to human space activities and needs to be measured and cataloged. As a new technology for space target surveillance, the measurement accuracy of diffuse reflection laser ranging (DRLR) is much higher than that of microwave radar and optoelectronic measurement. Based on the laser ranging data of space debris from the DRLR system at Shanghai Astronomical Observatory acquired in March-April, 2013, the characteristics and precision of the laser ranging data are analyzed and their applications in orbit determination of space debris are discussed, which is implemented for the first time in China. The experiment indicates that the precision of laser ranging data can reach 39 cm-228 cm. When the data are sufficient enough (four arcs measured over three days), the orbital accuracy of space debris can be up to 50 m.
文摘This paper establishes the phase space in the light of spacial series data , discusses the fractal structure of geological data in terms of correlated functions and studies the chaos of these data . In addition , it introduces the R/S analysis for time series analysis into spacial series to calculate the structural fractal dimensions of ranges and standard deviation for spacial series data -and to establish the fractal dimension matrix and the procedures in plotting the fractal dimension anomaly diagram with vector distances of fractal dimension . At last , it has examples of its application .
基金Supported by the National Natural Science Foundation of China
文摘We investigate the wavelet transform of yearly mean relative sunspot number series from 1700 to 2002. The curve of the global wavelet power spectrum peaks at 11-yr, 53-yr and 101-yr periods. The evolution of the amplitudes of the three periods is studied. The results show that around 1750 and 1800, the amplitude of the 53-yr period was much higher than that of the the 11-yr period, that the ca. 53-yr period was apparent only for the interval from 1725 to 1850, and was very low after 1850, that around 1750, 1800 and 1900, the amplitude of the 101-yr period was higher than that of the 11-yr period and that, from 1940 to 2000, the 11-yr period greatly dominates over the other two periods.
基金supported by the National Natural Science Foundation of China under Grant Nos.U2031140,11873027,and 12073077。
文摘The extraction of high-temperature regions in active regions(ARs)is an important means to help understand the mechanism of coronal heating.The important observational means of high-temperature radiation in ARs is the main emission line of Fe XVⅢin the 94?of the Atmospheric Imaging Assembly.However,the diagnostic algorithms for Fe XVⅢ,including the differential emission measure(DEM)and linear diagnostics proposed by Del based on the DEM,have been greatly limited for a long time,and the results obtained are different from the predictions.In this paper,we use the outlier detection method to establish the nonlinear correlation between 94?and 171,193,211?based on the former researches by others.A neural network based on 171,193,211?is constructed to replace the low-temperature emission lines in the ARs of 94?.The predicted results are regarded as the low-temperature components of 94?,and then the predicted results are subtracted from 94?to obtain the outlier component of 94?,or Fe XVⅢ.Then,the outlier components obtained by neural network are compared with the Fe XVⅢobtained by DEM and Del's method,and a high similarity is found,which proves the reliability of neural network to obtain the high-temperature components of ARs,but there are still many differences.In order to analyze the differences between the Fe XVⅢobtained by the three methods,we subtract the Fe XVⅢobtained by the DEM and Del's method from the Fe XVⅢobtained by the neural network to obtain the residual value,and compare it with the results of Fe XIV in the temperature range of 6.1-6.45 MK.It is found that there is a great similarity,which also shows that the Fe XVⅢobtained by DEM and Del's method still has a large low-temperature component dominated by Fe XIV,and the Fe XVⅢobtained by neural network is relatively pure.
基金funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University,through the Research Groups Program Grant no.(RGP-1443-0045).
文摘The COVID-19 pandemic has spread globally,resulting in financialinstability in many countries and reductions in the per capita grossdomestic product.Sentiment analysis is a cost-effective method for acquiringsentiments based on household income loss,as expressed on social media.However,limited research has been conducted in this domain using theLexDeep approach.This study aimed to explore social trend analytics usingLexDeep,which is a hybrid sentiment analysis technique,on Twitter to capturethe risk of household income loss during the COVID-19 pandemic.First,tweet data were collected using Twint with relevant keywords before(9 March2019 to 17 March 2020)and during(18 March 2020 to 21 August 2021)thepandemic.Subsequently,the tweets were annotated using VADER(lexiconbased)and fed into deep learning classifiers,and experiments were conductedusing several embeddings,namely simple embedding,Global Vectors,andWord2Vec,to classify the sentiments expressed in the tweets.The performanceof each LexDeep model was evaluated and compared with that of a supportvector machine(SVM).Finally,the unemployment rates before and duringCOVID-19 were analysed to gain insights into the differences in unemploymentpercentages through social media input and analysis.The resultsdemonstrated that all LexDeep models with simple embedding outperformedthe SVM.This confirmed the superiority of the proposed LexDeep modelover a classical machine learning classifier in performing sentiment analysistasks for domain-specific sentiments.In terms of the risk of income loss,the unemployment issue is highly politicised on both the regional and globalscales;thus,if a country cannot combat this issue,the global economy will alsobe affected.Future research should develop a utility maximisation algorithmfor household welfare evaluation,given the percentage risk of income lossowing to COVID-19.
基金We are grateful to the support from the National Natural Science Foundation of China (NSFC) (31425002, 91231205, 81430011, 61303161, 31470220, and 31327001), and the Frontier Science Research Program, the Soil-Microbe System Function and Regulation Program, and the Science and Technology Service Network Initiative (STS) from the Chinese Academy of Sciences (CAS).
文摘Method development has always been and will continue to be a core driving force of microbiome science, In this perspective, we argue that in the next decade, method development in microbiome analysis will be driven by three key changes in both ways of thinking and technological platforms: ① a shift from dissecting microbiota structure by sequencing to tracking microbiota state, function, and intercellular interaction via imaging; ② a shift from interrogating a consortium or population of cells to probing individual cells; and ③a shift from microbiome data analysis to microbiome data science. Some of the recent methoddevelopment efforts by Chinese microbiome scientists and their international collaborators that underlie these technological trends are highlighted here. It is our belief that the China Microbiome Initiative has the opportunity to deliver outstanding "Made-in-China" tools to the international research community, by building an ambitious, competitive, and collaborative program at the forefront of method development for microbiome science.
基金supported by the National 863 Foundation under grant 863-2.5.1.25.
文摘The scientific satellite SST (Space Solar Telescope) is an important research project strongly supported by the Chinese Academy of Sciences. Every day, SST acquires 50 GB of data (after processing) but only 10GB can be transmitted to the ground because of limited time of satellite passage and limited channel volume. Therefore, the data must be compressed before transmission. Wavelets analysis is a new technique developed over the last 10 years, with great potential of application. We start with a brief introduction to the essential principles of wavelet analysis, and then describe the main idea of embedded zerotree wavelet coding, used for compressing the SST images. The results show that this coding is adequate for the job.
基金supported by the National Natural Science Foundation of China(NSFC)under grant No.42304044the Natural Science Foundation of Henan,China under grant No.222300420385。
文摘High-precision polar motion prediction is of great significance for deep space exploration and satellite navigation.Polar motion is affected by a variety of excitation factors,and nonlinear prediction methods are more suitable for polar motion prediction.In order to explore the effect of deep learning in polar motion prediction.This paper proposes a combined model based on empirical wavelet transform(EWT),Convolutional Neural Networks(CNN)and Long Short Term Memory(LSTM).By training and forecasting EOP 20C04 data,the effectiveness of the algorithm is verified,and the performance of two forecasting strategies in deep learning for polar motion prediction is explored.The results indicate that recursive multi-step prediction performs better than direct multi-step prediction for short-term forecasts within 15 days,while direct multi-step prediction is more suitable for medium and long-term forecasts.In the 365 days forecast,the mean absolute error of EWT-CNN-LSTM in the X direction and Y direction is 18.25 mas and 15.78 mas,respectively,which is 23.5% and 16.2% higher than the accuracy of Bulletin A.The results show that the algorithm has a good effect in medium and long term polar motion prediction.
基金funded by the National Natural Science Foundation of China(NSFC,Nos.12373086 and 12303082)CAS“Light of West China”Program+2 种基金Yunnan Revitalization Talent Support Program in Yunnan ProvinceNational Key R&D Program of ChinaGravitational Wave Detection Project No.2022YFC2203800。
文摘Attitude is one of the crucial parameters for space objects and plays a vital role in collision prediction and debris removal.Analyzing light curves to determine attitude is the most commonly used method.In photometric observations,outliers may exist in the obtained light curves due to various reasons.Therefore,preprocessing is required to remove these outliers to obtain high quality light curves.Through statistical analysis,the reasons leading to outliers can be categorized into two main types:first,the brightness of the object significantly increases due to the passage of a star nearby,referred to as“stellar contamination,”and second,the brightness markedly decreases due to cloudy cover,referred to as“cloudy contamination.”The traditional approach of manually inspecting images for contamination is time-consuming and labor-intensive.However,we propose the utilization of machine learning methods as a substitute.Convolutional Neural Networks and SVMs are employed to identify cases of stellar contamination and cloudy contamination,achieving F1 scores of 1.00 and 0.98 on a test set,respectively.We also explore other machine learning methods such as ResNet-18 and Light Gradient Boosting Machine,then conduct comparative analyses of the results.