The Cu_2MoS_4 nanoparticles were prepared using a relatively simple and convenient solid-phase process, which was applied for the first time. The crystalline structure, morphology, and optical properties of Cu_2MoS_4 ...The Cu_2MoS_4 nanoparticles were prepared using a relatively simple and convenient solid-phase process, which was applied for the first time. The crystalline structure, morphology, and optical properties of Cu_2MoS_4 nanoparticles were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and UV-vis spectrophotometry. Cu_2MoS_4 nanoparticles having a band gap of 1.66 eV exhibits good photocatalytic activity in the degradation of methylene blue, which indicates that this simple process may be critical to facilitate the cheap production of photocatalysts.展开更多
Magnetic field was tentatively introduced into Fenton reactions system for the degradation and discoloration of methyl blue as the represent of organic chemical dye, which was a bio-refractory organic pollutant in ind...Magnetic field was tentatively introduced into Fenton reactions system for the degradation and discoloration of methyl blue as the represent of organic chemical dye, which was a bio-refractory organic pollutant in industry wastewater. It was found that under optimal Fenton reaction conditions, with the assistant of magnetic field in Fenton reactions, the degradation rate of methyl blue, the decomposition rate of H2O2 and the conversion rate of Fe^2+ were accelerated, the extent of them would be improved by the increase of magnetic field intensity. Meanwhile, the mineralization of methyl blue (CODer) was improved by over 10% with magnetic field.展开更多
The equilibrium, kinetics and thermodynamics of the adsorption of methylene blue( MB) from aqueous solution onto copper coordination polymer with dithiooxamide( H2dtoaCu),one of the metal-organic frameworks( MOFs),wer...The equilibrium, kinetics and thermodynamics of the adsorption of methylene blue( MB) from aqueous solution onto copper coordination polymer with dithiooxamide( H2dtoaCu),one of the metal-organic frameworks( MOFs),were investigated in a batch adsorption system as a function of initial pH, adsorbent concentration, contact time, initial dye concentration, and temperature. The Langmuir, Freundlich, and DubininRadushkevich( D-R) isotherm models were used for modeling the adsorption equilibrium. It was found that Langmuir model yielded a much better fit than the Freundlich model under different temperatures. The maximum monolayer adsorption capacities of MB were 192. 98,229. 86,and 297. 38 mg /g at 298,308,and 318 K,respectively. The calculated mean adsorption energy( 8. 26-11. 04 kJ /mol) using D-R model indicated that the adsorption process might take place by chemical adsorption mechanism.Otherwise,the kinetic studies revealed that the adsorption process could be well explained by pseudo-second-order rate kinetics and intraparticle diffusion was not the rate-limiting step.Thermodynamic studies indicated that this system was feasible,spontaneous,and endothermic process. Based on these studies,H2dtoaCu can be considered as a potential adsorbent for the removal of MB from aqueous solution.展开更多
Graphene aerogel was synthesized and used for the removal of methyl blue from aqueous solutions.The effect of solution pH,temperature and adsorption time on the adsorption performance of the graphene aerogel was studi...Graphene aerogel was synthesized and used for the removal of methyl blue from aqueous solutions.The effect of solution pH,temperature and adsorption time on the adsorption performance of the graphene aerogel was studied systematically.In addition,investigations were also performed to determine the nature of adsorption.The experimental results show that graphene aerogel is a highly efficient adsorbent for the treatment of methyl blue in aqueous solutions.In addition,the adsorption of methyl blue proceeds through a single layer physical adsorption on the graphene aerogel.The findings herein are useful for the future development of adsorbent for in water.展开更多
Tea waste/CuFe2O4 (TW/C) composite was prepared by co-precipitation method. The TW and TW/C samples are characterized by FTIR, XRD, SEM and N2 physical adsorption. The results showed that specific surface area of 350 ...Tea waste/CuFe2O4 (TW/C) composite was prepared by co-precipitation method. The TW and TW/C samples are characterized by FTIR, XRD, SEM and N2 physical adsorption. The results showed that specific surface area of 350 and 570 m2·g?1 for TW and TW/C, respectively. The average pore size of TW/C is ca. 100 nm. Adsorption of methylen blue onto TW/C composite has been studied. Measurements are performed at various contact time, pH and adsorbent dosage. The adsorption kinetics of methylen blue (MB) could be described by the pseudo-second order kinetic model. The adsorption isotherms are described by means of Langmuir and Freundlich isotherms. It was found that the Freundlich model fit better than the Langmuir model. The thermodynamic constants of the adsorption were calculated to predict the nature of adsorption. The values of thermodynamic parameters indicate that a spontaneous and endothermic process was occurred.展开更多
A new method to determine the concentration of amikacin (AMK) using methyl blue (MB) as electrochemical probe was developed in this paper. In pH 4.5 Britton-Robinson (B-R) buffer solution, the MB reacted with AM...A new method to determine the concentration of amikacin (AMK) using methyl blue (MB) as electrochemical probe was developed in this paper. In pH 4.5 Britton-Robinson (B-R) buffer solution, the MB reacted with AMK to form ion association complexes, which led to the reductive peak current of MB at -0.275 V (versus SCE) to decrease, and the decreases were linear with the concentration of AMK in the range of 1.0-60.0 mg/L, the regression of equation is AIp (hA) = -8.48 + 102.36c (rag/L), correlation coefficient yis 0.997. The conditions for determining the concentration of AMK using linear sweep voltammetry (SLV) were optimized. The method was used to determine the content of amikacin commercially available with satisfactory results.展开更多
This research investigates the efficacy of activated Gmelina Wood Sawdust (GWS) as an adsorbent for the removal of methylene blue (MB) dye from aqueous solutions, in comparison with raw GWS. The study employs laborato...This research investigates the efficacy of activated Gmelina Wood Sawdust (GWS) as an adsorbent for the removal of methylene blue (MB) dye from aqueous solutions, in comparison with raw GWS. The study employs laboratory experiments to assess the percentage of dye removal across various temperature and pH conditions. The adsorption process is scrutinized under different parameters, encompassing contact time, initial dye concentration, adsorbent dosage, temperature, and pH. Results demonstrate that activated GWS surpasses its raw counterpart, showcasing superior MB dye removal percentages. Extended contact times increased initial dye concentrations, and higher adsorbent dosages contribute positively to removal efficiency, while temperature exhibits an inverse relationship with dye removal. Optimal adsorption occurs at a pH of 7.0, aligning with the adsorbent’s zero-point charge (pHzpc), underscoring the role of surface charge in the adsorption process. This study underscores the potential of activated GWS as an economical and promising adsorbent material for addressing pollutants. Furthermore, the utilization of activated carbon derived from abundant agricultural waste underscores an environmentally conscious approach to adsorption applications. The ability to tailor the size and properties of activated carbon particles opens avenues for optimizing adsorption capabilities, thereby presenting opportunities for enhanced water treatment solutions.展开更多
Palygorskite(PG)adsorbent with superior adsorption property and ion-exchange ability is highly desired in the field of dye removal.However,it generates high amounts of precipitation due to the granular form,resulting ...Palygorskite(PG)adsorbent with superior adsorption property and ion-exchange ability is highly desired in the field of dye removal.However,it generates high amounts of precipitation due to the granular form,resulting in secondary pollution after adsorption.Herein,the novel high porosity PG-based nanofibers that are easy for operating and retrieving have been fabricated using effective solution blowing and subsequent calcination.The obtained highly efficient adsorption nanofibers exhibit large specific surface area about 170.50 m^(2)/g with average diameter from 243 nm to 365 nm.Based on the abovementioned nanofibrous structure and negatively charged PG,the solution blowing of PG-based nanofibers(SBPNs)showed high adsorption capacity for methylene blue(MB)(112.36 mg/g).In addition,the adsorption of SBPNs is well described by the Langmuir isotherm model.This work provides new SBPNs forming process for the fields of dye removal,which may achieve the production of PG adsorbents at the industrial level.展开更多
This paper reports the practicability of using coffee residues to remove widely used basic dyes like MB (Methylene Blue) from wastewaters. The effect of different batch system parameters, namely stirring speed, pH, ...This paper reports the practicability of using coffee residues to remove widely used basic dyes like MB (Methylene Blue) from wastewaters. The effect of different batch system parameters, namely stirring speed, pH, initial dye concentration and contact time were studied. Moreover, in continuous fixed-bed column systems, the effects of parameters such as bed-depth, flow rate and initial dye concentration were examined. The experimental batch systems data were simulated using (a) Freundlich, Langmuir and Sips isotherm models and (b) 1st order, 2nd order, and intra-particle kinetic models. The results revealed that the MB is fairly adsorbed on coffee residues. This process could be a low cost technique for the removal of basic dyes from aqueous systems.展开更多
Purpose: MCF-7 (ER+, WTP53) and MDA-MB-231 (ER Met, Mutant P53) Caffeic Acid Phenethyl Ester (CAPE) and DNA Methyl Transferase Inhibitor (DNMTi) in breast cancer cell lines of Zebularine (ZEB) single and combined appl...Purpose: MCF-7 (ER+, WTP53) and MDA-MB-231 (ER Met, Mutant P53) Caffeic Acid Phenethyl Ester (CAPE) and DNA Methyl Transferase Inhibitor (DNMTi) in breast cancer cell lines of Zebularine (ZEB) single and combined application of TP53, caspase-9, caspase 8 and caspase-3 genes as a result of the use of single and combined drug methylation profiles are aimed to be evaluated by specific PCR method. Material-Metods: In the MCF-7 and MDA-MB-231 breast cancer cell lines, MTT test and survival analysis were performed as a result of single and combined application of CAPE and Zebularine and Methylation Specific PCR was performed to examine the methylation of caspase-3, caspase-8, caspase-9 and TP53 genes. Results: According to the results of 24-hour drug administration, the IC50 for the MCF-7 cell line was determined as 200 μM, for CAPE 40 μM and for the combined values of 50 μM ZEB + 5 μM CAPE. The effects of caspase-3, caspase-8, caspase-9 and TP53 genes on the methylation level of ZEB, CAPE and ZEB + CAPE drug combination were determined by using bisulfite modified DNAs in MCF-7 and MDA-MB-231 cell lines. Discussion: In the MCF-7 cell line, the 120 μM ZEB viability rate was 51%, and the viability of 80 μM ZEB MDA-MB-231 breast cancer cells decreased by 59.7%. After 20 μM CAPE, viability in MCF-7 cells decreased by 31% in 120 μM CAPE and MDA-MB-231 cells decreased by 41%. The viability with 40 μM CAPE decreased by 19% in MDA-MB-231 cells. It was found that 20 μM CAPE concentration was associated with TP53 methylation in MCF-7 cell lines. The 80 μM ZEB concentration was found to be closely related to the unmethylated status of the TP53 gene. These results obtained with 50 μM ZEB + 5 μM CAPE application were found to be related to the methylated-unmetylated status of the TP53 gene in half (50%). For the caspase-9 gene of MDA-MB-231 cells, 80 μM ZEB concentration was found to be associated with unmetylated status. The effective use of drugs with low concentrations of the drug dose provides a more appropriate approach in terms of treatment.展开更多
目的研究去甲基化药物5-氮杂-2-脱氧胞嘧啶(5-aza-2.-deoxycytidine,5-Aza-CdR)对三阴性乳腺癌(triple-negative breast cancer,TNBC)细胞MDA-MB-231凋亡及过氧化物酶体增殖物激活受体-γ(peroxisome proliferator-activated receptor-...目的研究去甲基化药物5-氮杂-2-脱氧胞嘧啶(5-aza-2.-deoxycytidine,5-Aza-CdR)对三阴性乳腺癌(triple-negative breast cancer,TNBC)细胞MDA-MB-231凋亡及过氧化物酶体增殖物激活受体-γ(peroxisome proliferator-activated receptor-γ,PPAR-γ)基因表达的影响。方法 5-Aza-CdR作用MDA-MB-231细胞后,流式细胞术检测MDA-MB-231细胞凋亡,实时荧光定量PCR(real-time fluorescent quantive PCR,q PCR)检测PPAR-γ m RNA的表达,甲基特异性PCR(methylmion specific PCR,MSP)检测PPAR-γ甲基化的改变。结果流式细胞结果表明,随着药物浓度增加,细胞处理48 h后,凋亡率增加,呈剂量依赖性。5、10、15和20μmol/L组凋亡率分别为(14.1±2.3)%、(25.4±3.3)%、(32.7±2.8)%、(43.1±1.9)%,与对照组的(6.9±0.8)%相比差异有统计学意义(P<0.05);q PCR结果显示,随着药物浓度增加,PPAR-γ m RNA表达上调;MSP显示PPAR-γ甲基化水平降低。结论 5-Aza-CdR能降低PPAR-γ甲基化状态,使PPAR-γ表达增加,促进MDA-MB-231细胞凋亡。PPAR-γ甲基化水平改变可能是引起MDA-MB-231细胞生物学改变的机制之一。展开更多
CdS/NiS nanocomposites were synthesized by electrochemical method. Ni and Cd is one of the important II-VI semiconducting materials with a direct band gap of 3.26 eV which finds applications in electrical conductivity...CdS/NiS nanocomposites were synthesized by electrochemical method. Ni and Cd is one of the important II-VI semiconducting materials with a direct band gap of 3.26 eV which finds applications in electrical conductivity and photo-catalysis. The synthesized nanocomposites were characterized by BET, UV-VIS, XRD, FE-SEM (EDAX) techniques. X-Ray diffraction (XRD) reveals crystallite size to be 23.22 nm which was calculated using Williamson-Hall (W-H) plot method. The energy of the band gap for CdS/NiS could be thus estimated to be 3.26 eV. The photocatalytic activity of the sample was evaluated by the degradation of textile dye methylene Blue (MB) in aqueous solutions under UV radiation. Hydrogen energy is regarded as a promising alternative in terms of energy conversion and storage. Hydrogen Evolution Reaction (HER) was carried out in both visible light and UV light by using Hydrazine (N<sub>2</sub>H<sub>4</sub>H<sub>2</sub>O) in the presence of CdS/NiS nanocomposite. The synthesized photocatalyst shows applicable performance for kinetics of Hydrogen Evolution Reaction (HER) in Visible light and UV light. The decomposition of hydrazine (N<sub>2</sub>H<sub>4</sub>H<sub>2</sub>O) proceeded rapidly to generate free hydrogen rich gas through OH radical contact with CdS/NiS nanocomposite at room temperature. The rate of HER is limited by either proton adsorption onto an active site or evolution of formed hydrogen from the surface. A high Tafel slope is indicative of proton adsorption as the rate limiting step, while a lower Tafel slope (20 - 45 mV) indicates that the evolution of molecules hydrogen from the catalyst is rate limiting. In the present case the Tafel slopes for visible light 23.5 mV and 42.5 mV for UV light. Blank experiments show poor activity for HER <em>i.e.</em> 10.1 - 13.5 mV.展开更多
基金financially supported by the Fundamental Research Funds for the Central Universities (No. FRF-BD-15-004A)
文摘The Cu_2MoS_4 nanoparticles were prepared using a relatively simple and convenient solid-phase process, which was applied for the first time. The crystalline structure, morphology, and optical properties of Cu_2MoS_4 nanoparticles were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and UV-vis spectrophotometry. Cu_2MoS_4 nanoparticles having a band gap of 1.66 eV exhibits good photocatalytic activity in the degradation of methylene blue, which indicates that this simple process may be critical to facilitate the cheap production of photocatalysts.
基金support by the Natural Science Research Foundation of Jiangnan University(No.005796).
文摘Magnetic field was tentatively introduced into Fenton reactions system for the degradation and discoloration of methyl blue as the represent of organic chemical dye, which was a bio-refractory organic pollutant in industry wastewater. It was found that under optimal Fenton reaction conditions, with the assistant of magnetic field in Fenton reactions, the degradation rate of methyl blue, the decomposition rate of H2O2 and the conversion rate of Fe^2+ were accelerated, the extent of them would be improved by the increase of magnetic field intensity. Meanwhile, the mineralization of methyl blue (CODer) was improved by over 10% with magnetic field.
基金National Key Technologies R&D Program of China during the 12th Five-Year Plan Period(No.2012BAD29B06,No2012BAK01B01)National Natural Science Foundation of China(No.21375021)+2 种基金Major Project of Fujian Provincial Science and Technology Program,China(No.2011N5008)Natural Science Foundation of Fujian Province of China(No.2012J05023)Program for New Century Excellent Talents in Fujian Province University,China(No.JA10011)
文摘The equilibrium, kinetics and thermodynamics of the adsorption of methylene blue( MB) from aqueous solution onto copper coordination polymer with dithiooxamide( H2dtoaCu),one of the metal-organic frameworks( MOFs),were investigated in a batch adsorption system as a function of initial pH, adsorbent concentration, contact time, initial dye concentration, and temperature. The Langmuir, Freundlich, and DubininRadushkevich( D-R) isotherm models were used for modeling the adsorption equilibrium. It was found that Langmuir model yielded a much better fit than the Freundlich model under different temperatures. The maximum monolayer adsorption capacities of MB were 192. 98,229. 86,and 297. 38 mg /g at 298,308,and 318 K,respectively. The calculated mean adsorption energy( 8. 26-11. 04 kJ /mol) using D-R model indicated that the adsorption process might take place by chemical adsorption mechanism.Otherwise,the kinetic studies revealed that the adsorption process could be well explained by pseudo-second-order rate kinetics and intraparticle diffusion was not the rate-limiting step.Thermodynamic studies indicated that this system was feasible,spontaneous,and endothermic process. Based on these studies,H2dtoaCu can be considered as a potential adsorbent for the removal of MB from aqueous solution.
基金Funded by the Natural Science Foundation of Hubei Province(2018CFB785)。
文摘Graphene aerogel was synthesized and used for the removal of methyl blue from aqueous solutions.The effect of solution pH,temperature and adsorption time on the adsorption performance of the graphene aerogel was studied systematically.In addition,investigations were also performed to determine the nature of adsorption.The experimental results show that graphene aerogel is a highly efficient adsorbent for the treatment of methyl blue in aqueous solutions.In addition,the adsorption of methyl blue proceeds through a single layer physical adsorption on the graphene aerogel.The findings herein are useful for the future development of adsorbent for in water.
文摘Tea waste/CuFe2O4 (TW/C) composite was prepared by co-precipitation method. The TW and TW/C samples are characterized by FTIR, XRD, SEM and N2 physical adsorption. The results showed that specific surface area of 350 and 570 m2·g?1 for TW and TW/C, respectively. The average pore size of TW/C is ca. 100 nm. Adsorption of methylen blue onto TW/C composite has been studied. Measurements are performed at various contact time, pH and adsorbent dosage. The adsorption kinetics of methylen blue (MB) could be described by the pseudo-second order kinetic model. The adsorption isotherms are described by means of Langmuir and Freundlich isotherms. It was found that the Freundlich model fit better than the Langmuir model. The thermodynamic constants of the adsorption were calculated to predict the nature of adsorption. The values of thermodynamic parameters indicate that a spontaneous and endothermic process was occurred.
基金The work was supported by the National Natural Science Foundation of China (No. 20375020).
文摘A new method to determine the concentration of amikacin (AMK) using methyl blue (MB) as electrochemical probe was developed in this paper. In pH 4.5 Britton-Robinson (B-R) buffer solution, the MB reacted with AMK to form ion association complexes, which led to the reductive peak current of MB at -0.275 V (versus SCE) to decrease, and the decreases were linear with the concentration of AMK in the range of 1.0-60.0 mg/L, the regression of equation is AIp (hA) = -8.48 + 102.36c (rag/L), correlation coefficient yis 0.997. The conditions for determining the concentration of AMK using linear sweep voltammetry (SLV) were optimized. The method was used to determine the content of amikacin commercially available with satisfactory results.
文摘This research investigates the efficacy of activated Gmelina Wood Sawdust (GWS) as an adsorbent for the removal of methylene blue (MB) dye from aqueous solutions, in comparison with raw GWS. The study employs laboratory experiments to assess the percentage of dye removal across various temperature and pH conditions. The adsorption process is scrutinized under different parameters, encompassing contact time, initial dye concentration, adsorbent dosage, temperature, and pH. Results demonstrate that activated GWS surpasses its raw counterpart, showcasing superior MB dye removal percentages. Extended contact times increased initial dye concentrations, and higher adsorbent dosages contribute positively to removal efficiency, while temperature exhibits an inverse relationship with dye removal. Optimal adsorption occurs at a pH of 7.0, aligning with the adsorbent’s zero-point charge (pHzpc), underscoring the role of surface charge in the adsorption process. This study underscores the potential of activated GWS as an economical and promising adsorbent material for addressing pollutants. Furthermore, the utilization of activated carbon derived from abundant agricultural waste underscores an environmentally conscious approach to adsorption applications. The ability to tailor the size and properties of activated carbon particles opens avenues for optimizing adsorption capabilities, thereby presenting opportunities for enhanced water treatment solutions.
基金National Natural Science Foundation of China(No.51473121)Science and Technology Plans of Tianjin,China(No.20YDTPJC03180)National Undergraduate Training Programs for Innovation and Entrepreneurship,China(No.202010058069)。
文摘Palygorskite(PG)adsorbent with superior adsorption property and ion-exchange ability is highly desired in the field of dye removal.However,it generates high amounts of precipitation due to the granular form,resulting in secondary pollution after adsorption.Herein,the novel high porosity PG-based nanofibers that are easy for operating and retrieving have been fabricated using effective solution blowing and subsequent calcination.The obtained highly efficient adsorption nanofibers exhibit large specific surface area about 170.50 m^(2)/g with average diameter from 243 nm to 365 nm.Based on the abovementioned nanofibrous structure and negatively charged PG,the solution blowing of PG-based nanofibers(SBPNs)showed high adsorption capacity for methylene blue(MB)(112.36 mg/g).In addition,the adsorption of SBPNs is well described by the Langmuir isotherm model.This work provides new SBPNs forming process for the fields of dye removal,which may achieve the production of PG adsorbents at the industrial level.
文摘This paper reports the practicability of using coffee residues to remove widely used basic dyes like MB (Methylene Blue) from wastewaters. The effect of different batch system parameters, namely stirring speed, pH, initial dye concentration and contact time were studied. Moreover, in continuous fixed-bed column systems, the effects of parameters such as bed-depth, flow rate and initial dye concentration were examined. The experimental batch systems data were simulated using (a) Freundlich, Langmuir and Sips isotherm models and (b) 1st order, 2nd order, and intra-particle kinetic models. The results revealed that the MB is fairly adsorbed on coffee residues. This process could be a low cost technique for the removal of basic dyes from aqueous systems.
文摘Purpose: MCF-7 (ER+, WTP53) and MDA-MB-231 (ER Met, Mutant P53) Caffeic Acid Phenethyl Ester (CAPE) and DNA Methyl Transferase Inhibitor (DNMTi) in breast cancer cell lines of Zebularine (ZEB) single and combined application of TP53, caspase-9, caspase 8 and caspase-3 genes as a result of the use of single and combined drug methylation profiles are aimed to be evaluated by specific PCR method. Material-Metods: In the MCF-7 and MDA-MB-231 breast cancer cell lines, MTT test and survival analysis were performed as a result of single and combined application of CAPE and Zebularine and Methylation Specific PCR was performed to examine the methylation of caspase-3, caspase-8, caspase-9 and TP53 genes. Results: According to the results of 24-hour drug administration, the IC50 for the MCF-7 cell line was determined as 200 μM, for CAPE 40 μM and for the combined values of 50 μM ZEB + 5 μM CAPE. The effects of caspase-3, caspase-8, caspase-9 and TP53 genes on the methylation level of ZEB, CAPE and ZEB + CAPE drug combination were determined by using bisulfite modified DNAs in MCF-7 and MDA-MB-231 cell lines. Discussion: In the MCF-7 cell line, the 120 μM ZEB viability rate was 51%, and the viability of 80 μM ZEB MDA-MB-231 breast cancer cells decreased by 59.7%. After 20 μM CAPE, viability in MCF-7 cells decreased by 31% in 120 μM CAPE and MDA-MB-231 cells decreased by 41%. The viability with 40 μM CAPE decreased by 19% in MDA-MB-231 cells. It was found that 20 μM CAPE concentration was associated with TP53 methylation in MCF-7 cell lines. The 80 μM ZEB concentration was found to be closely related to the unmethylated status of the TP53 gene. These results obtained with 50 μM ZEB + 5 μM CAPE application were found to be related to the methylated-unmetylated status of the TP53 gene in half (50%). For the caspase-9 gene of MDA-MB-231 cells, 80 μM ZEB concentration was found to be associated with unmetylated status. The effective use of drugs with low concentrations of the drug dose provides a more appropriate approach in terms of treatment.
文摘目的研究去甲基化药物5-氮杂-2-脱氧胞嘧啶(5-aza-2.-deoxycytidine,5-Aza-CdR)对三阴性乳腺癌(triple-negative breast cancer,TNBC)细胞MDA-MB-231凋亡及过氧化物酶体增殖物激活受体-γ(peroxisome proliferator-activated receptor-γ,PPAR-γ)基因表达的影响。方法 5-Aza-CdR作用MDA-MB-231细胞后,流式细胞术检测MDA-MB-231细胞凋亡,实时荧光定量PCR(real-time fluorescent quantive PCR,q PCR)检测PPAR-γ m RNA的表达,甲基特异性PCR(methylmion specific PCR,MSP)检测PPAR-γ甲基化的改变。结果流式细胞结果表明,随着药物浓度增加,细胞处理48 h后,凋亡率增加,呈剂量依赖性。5、10、15和20μmol/L组凋亡率分别为(14.1±2.3)%、(25.4±3.3)%、(32.7±2.8)%、(43.1±1.9)%,与对照组的(6.9±0.8)%相比差异有统计学意义(P<0.05);q PCR结果显示,随着药物浓度增加,PPAR-γ m RNA表达上调;MSP显示PPAR-γ甲基化水平降低。结论 5-Aza-CdR能降低PPAR-γ甲基化状态,使PPAR-γ表达增加,促进MDA-MB-231细胞凋亡。PPAR-γ甲基化水平改变可能是引起MDA-MB-231细胞生物学改变的机制之一。
文摘CdS/NiS nanocomposites were synthesized by electrochemical method. Ni and Cd is one of the important II-VI semiconducting materials with a direct band gap of 3.26 eV which finds applications in electrical conductivity and photo-catalysis. The synthesized nanocomposites were characterized by BET, UV-VIS, XRD, FE-SEM (EDAX) techniques. X-Ray diffraction (XRD) reveals crystallite size to be 23.22 nm which was calculated using Williamson-Hall (W-H) plot method. The energy of the band gap for CdS/NiS could be thus estimated to be 3.26 eV. The photocatalytic activity of the sample was evaluated by the degradation of textile dye methylene Blue (MB) in aqueous solutions under UV radiation. Hydrogen energy is regarded as a promising alternative in terms of energy conversion and storage. Hydrogen Evolution Reaction (HER) was carried out in both visible light and UV light by using Hydrazine (N<sub>2</sub>H<sub>4</sub>H<sub>2</sub>O) in the presence of CdS/NiS nanocomposite. The synthesized photocatalyst shows applicable performance for kinetics of Hydrogen Evolution Reaction (HER) in Visible light and UV light. The decomposition of hydrazine (N<sub>2</sub>H<sub>4</sub>H<sub>2</sub>O) proceeded rapidly to generate free hydrogen rich gas through OH radical contact with CdS/NiS nanocomposite at room temperature. The rate of HER is limited by either proton adsorption onto an active site or evolution of formed hydrogen from the surface. A high Tafel slope is indicative of proton adsorption as the rate limiting step, while a lower Tafel slope (20 - 45 mV) indicates that the evolution of molecules hydrogen from the catalyst is rate limiting. In the present case the Tafel slopes for visible light 23.5 mV and 42.5 mV for UV light. Blank experiments show poor activity for HER <em>i.e.</em> 10.1 - 13.5 mV.