Pure WOand Yb:WOthin films have been synthesized by spray pyrolysis technique. Effect of Yb doping concentration on photoelectrochemical, structural, morphological and optical properties of thin films are studied. X-r...Pure WOand Yb:WOthin films have been synthesized by spray pyrolysis technique. Effect of Yb doping concentration on photoelectrochemical, structural, morphological and optical properties of thin films are studied. X-ray diffraction analysis shows that all thin films are polycrystalline nature and exhibit monoclinic crystal structure. The 3 at% Yb:WOfilm shows superior photoelectrochemical(PEC) performance than that of pure WOfilm and it shows maximum photocurrent density(Iph= 1090 μA/cm) having onset potentials around +0.3 V/SCE in 0.01 M HClO. The photoelectrocatalytic process is more effective than that of the photocatalytic process for degradation of methyl orange(MO) dye. Yb doping in WOphotocatalyst is greatly effective to degrade MO dye. The enhancement in photoelectrocatalytic activity is mainly due to the suppressing the recombination rate of photogenerated electron-hole pairs. The mineralization of MO dye in aqueous solution is studied by measuring chemical oxygen demand(COD) values.展开更多
Molybdenum trioxide(MoO_(3))can be employed as an excellent host for intercalation due to its 2D lay-ered structure that connected by van der Waals interactions.Herein,a series of polyoxometalate-based MoO_(3) composi...Molybdenum trioxide(MoO_(3))can be employed as an excellent host for intercalation due to its 2D lay-ered structure that connected by van der Waals interactions.Herein,a series of polyoxometalate-based MoO_(3) composites(Al_(13)@MoO_(3))were successfully prepared by interpolating the Keggin-type polycationic AlO_(4)Al_(12)(OH)_(24)H_(2)O_(12)^(7+)(Al_(13))into MoO_(3)gallery.These composites can be applied to rapidly adsorb the anionic dye methyl orange(MO)through strong electrostatic interactions lead to compact and sta-ble gathering in the surrounding of the numerous charged Al_(13).Adsorption behaviors of composites with the different amount of Al_(13) were determined,these results revealed that Al_(13)-3.34%@MoO_(3)exhibited the most remarkable adsorption capacity.More importantly,the composite maintains superior adsorption capacity for five consecutive adsorption/desorption cycles,suggesting that Al_(13)@MoO_(3)can be an efficient and durable adsorbent.展开更多
基金University Grants Commission(UGC),New Delhi,for the financial support through the project No.‘‘41-869/2012(SR)’’
文摘Pure WOand Yb:WOthin films have been synthesized by spray pyrolysis technique. Effect of Yb doping concentration on photoelectrochemical, structural, morphological and optical properties of thin films are studied. X-ray diffraction analysis shows that all thin films are polycrystalline nature and exhibit monoclinic crystal structure. The 3 at% Yb:WOfilm shows superior photoelectrochemical(PEC) performance than that of pure WOfilm and it shows maximum photocurrent density(Iph= 1090 μA/cm) having onset potentials around +0.3 V/SCE in 0.01 M HClO. The photoelectrocatalytic process is more effective than that of the photocatalytic process for degradation of methyl orange(MO) dye. Yb doping in WOphotocatalyst is greatly effective to degrade MO dye. The enhancement in photoelectrocatalytic activity is mainly due to the suppressing the recombination rate of photogenerated electron-hole pairs. The mineralization of MO dye in aqueous solution is studied by measuring chemical oxygen demand(COD) values.
基金the National Natural Science Foundation of China(Nos.21872021,21671033,22172022 and 22071019).
文摘Molybdenum trioxide(MoO_(3))can be employed as an excellent host for intercalation due to its 2D lay-ered structure that connected by van der Waals interactions.Herein,a series of polyoxometalate-based MoO_(3) composites(Al_(13)@MoO_(3))were successfully prepared by interpolating the Keggin-type polycationic AlO_(4)Al_(12)(OH)_(24)H_(2)O_(12)^(7+)(Al_(13))into MoO_(3)gallery.These composites can be applied to rapidly adsorb the anionic dye methyl orange(MO)through strong electrostatic interactions lead to compact and sta-ble gathering in the surrounding of the numerous charged Al_(13).Adsorption behaviors of composites with the different amount of Al_(13) were determined,these results revealed that Al_(13)-3.34%@MoO_(3)exhibited the most remarkable adsorption capacity.More importantly,the composite maintains superior adsorption capacity for five consecutive adsorption/desorption cycles,suggesting that Al_(13)@MoO_(3)can be an efficient and durable adsorbent.