The solid acid SO_4^(2-)/TiO_2 was prepared by immersion method and applied for synthesis of propylene glycol methyl ether acetate(PMA) through esterification reaction of propylene glycol monomethyl ether(PM)and aceti...The solid acid SO_4^(2-)/TiO_2 was prepared by immersion method and applied for synthesis of propylene glycol methyl ether acetate(PMA) through esterification reaction of propylene glycol monomethyl ether(PM)and acetic acid(HAc). The optimal catalyst preparation condition was determined by orthogonal analysis of parameters in a five-factor and four-level test. The obtained solid acid catalysts were characterized in detail by means of X-ray powder diffraction, thermogravimetry, pyridine adsorbed IR analysis, scanning electron microscopy, and BET surface area method. Synthesis of PMA was studied in this paper through experimental investigation of reaction conditions such as temperature, molar ratio of reactants, catalyst dosage and agitation speed. Based on its possible reaction mechanism, a pseudo-homogeneous kinetic model was established and its activation energies E_a^+ and E_a^-,65.68 × 10~3J·mol^(-1) and 57.78 × 10~3J·mol^(-1), were estimated. To prepare shaped solid acid catalyst SO_4^(2-)/TiO_2, the shaping method of impregnation–shaping–impregnation was applied. The optimal molding formulation of solid acid catalyst, obtained from the orthogonal test, was found to be binder 7 wt%, reinforcing agent 20 wt%, pore forming material 2.5 wt%, and lubricant 4 wt%.The results of performance test of catalyst demonstrated that the shaped solid acid catalyst exhibited high activity and stability.展开更多
基金Supported by the National Natural Science Foundation of China(21306025,21576053)the International Science&Technology Cooperation Program of China(2013DFR90540)
文摘The solid acid SO_4^(2-)/TiO_2 was prepared by immersion method and applied for synthesis of propylene glycol methyl ether acetate(PMA) through esterification reaction of propylene glycol monomethyl ether(PM)and acetic acid(HAc). The optimal catalyst preparation condition was determined by orthogonal analysis of parameters in a five-factor and four-level test. The obtained solid acid catalysts were characterized in detail by means of X-ray powder diffraction, thermogravimetry, pyridine adsorbed IR analysis, scanning electron microscopy, and BET surface area method. Synthesis of PMA was studied in this paper through experimental investigation of reaction conditions such as temperature, molar ratio of reactants, catalyst dosage and agitation speed. Based on its possible reaction mechanism, a pseudo-homogeneous kinetic model was established and its activation energies E_a^+ and E_a^-,65.68 × 10~3J·mol^(-1) and 57.78 × 10~3J·mol^(-1), were estimated. To prepare shaped solid acid catalyst SO_4^(2-)/TiO_2, the shaping method of impregnation–shaping–impregnation was applied. The optimal molding formulation of solid acid catalyst, obtained from the orthogonal test, was found to be binder 7 wt%, reinforcing agent 20 wt%, pore forming material 2.5 wt%, and lubricant 4 wt%.The results of performance test of catalyst demonstrated that the shaped solid acid catalyst exhibited high activity and stability.