Background The primary differentially methylated regions(DMRs) which are maternally hypermethylated serve as imprinting control regions(ICRs) that drive monoallelic gene expression, and these ICRs have been investigat...Background The primary differentially methylated regions(DMRs) which are maternally hypermethylated serve as imprinting control regions(ICRs) that drive monoallelic gene expression, and these ICRs have been investigated due to their implications in mammalian development. Although a subset of genes has been identified as imprinted, in-depth comparative approach needs to be developed for identification of species-specific imprinted genes. Here, we examined DNA methylation status and allelic expression at the KBTBD6 locus across species and tissues and explored potential mechanisms of imprinting.Results Using whole-genome bisulfite sequencing and RNA-sequencing on parthenogenetic and normal porcine embryos, we identified a maternally hypermethylated DMR between the embryos at the KBTBD6 promoter Cp G island and paternal monoallelic expression of KBTBD6. Also, in analyzed domesticated mammals but not in humans, non-human primates and mice, the KBTBD6 promoter Cp G islands were methylated in oocytes and/or allelically methyl-ated in tissues, and monoallelic KBTBD6 expression was observed, indicating livestock-specific imprinting. Further analysis revealed that these Cp G islands were embedded within transcripts in porcine and bovine oocytes which coexisted with an active transcription mark and DNA methylation, implying the presence of transcription-dependent imprinting.Conclusions In this study, our comparative approach revealed an imprinted expression of the KBTBD6 gene in domesticated mammals, but not in humans, non-human primates, and mice which implicates species-specific evolution of genomic imprinting.展开更多
Salsolinol(1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline,Sal)is a catechol isoquinoline that causes neurotoxicity and shares structural similarity with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,an environme...Salsolinol(1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline,Sal)is a catechol isoquinoline that causes neurotoxicity and shares structural similarity with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,an environmental toxin that causes Parkinson's disease.However,the mechanism by which Sal mediates dopaminergic neuronal death remains unclear.In this study,we found that Sal significantly enhanced the global level of N~6-methyladenosine(m~6A)RNA methylation in PC12 cells,mainly by inducing the downregulation of the expression of m~6A demethylases fat mass and obesity-associated protein(FTO)and alk B homolog 5(ALKBH5).RNA sequencing analysis showed that Sal downregulated the Hippo signaling pathway.The m~6A reader YTH domain-containing family protein 2(YTHDF2)promoted the degradation of m~6A-containing Yes-associated protein 1(YAP1)mRNA,which is a downstream key effector in the Hippo signaling pathway.Additionally,downregulation of YAP1 promoted autophagy,indicating that the mutual regulation between YAP1 and autophagy can lead to neurotoxicity.These findings reveal the role of Sal on m~6A RNA methylation and suggest that Sal may act as an RNA methylation inducer mediating dopaminergic neuronal death through YAP1 and autophagy.Our results provide greater insights into the neurotoxic effects of catechol isoquinolines compared with other studies and may be a reference for assessing the involvement of RNA methylation in the pathogenesis of Parkinson's disease.展开更多
BACKGROUND N6-methyladenosine(m6A)methylation modification exists in Epstein-Barr virus(EBV)primary infection,latency,and lytic reactivation.It also modifies EBV latent genes and lytic genes.EBV-associated gastric can...BACKGROUND N6-methyladenosine(m6A)methylation modification exists in Epstein-Barr virus(EBV)primary infection,latency,and lytic reactivation.It also modifies EBV latent genes and lytic genes.EBV-associated gastric cancer(EBVaGC)is a distinctive molecular subtype of GC.We hypothesized EBV and m6A methylation regulators interact with each other in EBVaGC to differentiate it from other types of GC.AIM To investigate the mechanisms of m6A methylation regulators in EBVaGC to determine the differentiating factors from other types of GC.METHODS First,The Cancer Gene Atlas and Gene Expression Omnibus databases were used to analyze the expression pattern of m6A methylation regulators between EBVaGC and EBV-negative GC(EBVnGC).Second,we identified Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)functional enrichment of m6A-related differentially expressed genes.We quantified the relative abundance of immune cells and inflammatory factors in the tumor microenvironment(TME).Finally,cell counting kit-8 cell proliferation test,transwell test,and flow cytometry were used to verify the effect of insulin-like growth factor binding protein 1(IGFBP1)in EBVaGC cell lines.RESULTS m6A methylation regulators were involved in the occurrence and development of EBVaGC.Compared with EBVnGC,the expression levels of m6A methylation regulators Wilms tumor 1-associated protein,RNA binding motif protein 15B,CBL proto-oncogene like 1,leucine rich pentatricopeptide repeat containing,heterogeneous nuclear ribonucleoprotein A2B1,IGFBP1,and insulin-like growth factor 2 binding protein 1 were significantly downregulated in EBVaGC(P<0.05).The overall survival rate of EBVaGC patients with a lower expression level of IGFBP1 was significantly higher(P=0.046).GO and KEGG functional enrichment analyses showed that the immunity pathways were significantly activated and rich in immune cell infiltration in EBVaGC.Compared with EBVnGC,the infiltration of activated CD4+T cells,activated CD8+T cells,monocytes,activated dendritic cells,and plasmacytoid dendritic cells were significantly upregulated in EBVaGC(P<0.001).In EBVaGC,the expression level of proinflammatory factors interleukin(IL)-17,IL-21,and interferon-γ and immunosuppressive factor IL-10 were significantly increased(P<0.05).In vitro experiments demonstrated that the expression level of IGFBP1 was significantly lower in an EBVaGC cell line(SNU719)than in an EBVnGC cell line(AGS)(P<0.05).IGFBP1 overexpression significantly attenuated proliferation and migration and promoted the apoptosis levels in SNU719.Interfering IGFBP1 significantly promoted proliferation and migration and attenuated the apoptosis levels in AGS.CONCLUSION m6A regulators could remodel the TME of EBVaGC,which is classified as an immune-inflamed phenotype and referred to as a“hot”tumor.Among these regulators,we demonstrated that IGFBP1 affected proliferation,migration,and apoptosis.展开更多
Background:Methionine or lysine has been reported to influence DNA methylation and fat metabolism,but their combined effects in N6-methyl-adenosine(m^(6)A)RNA methylation remain unclarified.The combined effects of rum...Background:Methionine or lysine has been reported to influence DNA methylation and fat metabolism,but their combined effects in N6-methyl-adenosine(m^(6)A)RNA methylation remain unclarified.The combined effects of rumen-protected methionine and lysine(RML)in a low-protein(LP)diet on lipid metabolism,m^(6)A RNA methylation,and fatty acid(FA)profiles in the liver and muscle of lambs were investigated.Sixty-three male lambs were divided into three treatment groups,three pens per group and seven lambs per pen.The lambs were fed a 14.5%crude protein(CP)diet(adequate protein[NP]),12.5%CP diet(LP),and a LP diet plus RML(LP+RML)for 60 d.Results:The results showed that the addition of RML in a LP diet tended to lower the concentrations of plasma leptin(P=0.07),triglyceride(P=0.05),and non-esterified FA(P=0.08).Feeding a LP diet increased the enzyme activity or m RNA expression of lipogenic enzymes and decreased lipolytic enzymes compared with the NP diet.This effect was reversed by supplementation of RML with a LP diet.The inclusion of RML in a LP diet affected the polyunsaturated fatty acids(PUFA),n-3 PUFA,and n-6 PUFA in the liver but not in the muscle,which might be linked with altered expression of FA desaturase-1(FADS1)and acetyl-Co A carboxylase(ACC).A LP diet supplemented with RML increased(P<0.05)total m^(6)A levels in the liver and muscle and were accompanied by decreased expression of fat mass and obesity-associated protein(FTO)and alk B homologue 5(ALKBH5).The m RNA expressions of methyltransferase-like 3(METTL3)and methyltransferase-like 14(METTL14)in the LP+RML diet group were lower than those in the other two groups.Supplementation of RML with a LP diet affected only liver YTH domain family(YTHDF2)proteins(P<0.05)and muscle YTHDF3(P=0.09),which can be explained by limited m^(6)Abinding proteins that were mediated in m RNA fate.Conclusions:Our findings showed that the inclusion of RML in a LP diet could alter fat deposition through modulations of lipogenesis and lipolysis in the liver and muscle.These changes in fat metabolism may be associated with the modification of m^(6)A RNA methylation.展开更多
目的:探讨RNA m^(6)A甲基化修饰在脂肪细胞胰岛素抵抗中的作用及机制。方法:收集2型糖尿病患者术中赘余皮下脂肪组织,以非2型糖尿病患者同样组织为对照,检测组间RNA m^(6)A水平。高脂饮食诱导C57BL/6J小鼠构建胰岛素抵抗(in⁃sulin resis...目的:探讨RNA m^(6)A甲基化修饰在脂肪细胞胰岛素抵抗中的作用及机制。方法:收集2型糖尿病患者术中赘余皮下脂肪组织,以非2型糖尿病患者同样组织为对照,检测组间RNA m^(6)A水平。高脂饮食诱导C57BL/6J小鼠构建胰岛素抵抗(in⁃sulin resistance,IR)模型(HFD组,n=5,60%高脂饲料喂养16周),对照组10%低脂饲料喂养16周(CD组,n=5)。模型构建成功后,取附睾周围脂肪组织行表观转录组学m^(6)A甲基化修饰芯片检测,并借助MeRIP-qPCR实验、RT-qPCR以及RNA结合蛋白免疫沉淀测定(RNA Binding Protein Immunoprecipitation Assay,RIP)实验验证胰岛素信号转导相关基因变化;进一步观察METTL3小分子抑制剂STM2457对高脂饮食诱导下小鼠胰岛素信号转导基因的影响。结果:2型糖尿病患者和小鼠IR模型脂肪组织中总体m^(6)A修饰水平均升高(患者200 ng RNA t=-8.375,P<0.001;患者100 ng RNA t=-3.722,P=0.006;患者50 ng RNA t=-4.937;P=0.001;小鼠100 ng RNA t=-3.590,P=0.023;小鼠50 ng RNA t=-2.760,P=0.025)。表观转录组学检测证实IR的脂肪组织中1175个基因发生高m^(6)A修饰,55个基因发生低m^(6)A修饰,同时有182个基因呈现高m^(6)A修饰且低表达,包括AKT2、INSR、PIK3R1、ACACA、SREBF1等5个胰岛素信号转导关键基因,其中AKT2、INSR、ACACA、SREBF1等4个基因被确证并证实其与METTL3存在直接结合,其m^(6)A修饰水平受METTL3正向调控。STM2457作用下,胰岛素敏感性提高,且AKT2、INSR、ACACA、SREBF1转录水平上调,提示IR表型改善明显。结论:高脂饮食通过METTL3诱导脂肪细胞胰岛素信号转导基因AKT2、INSR、ACACA、SREBF1发生m^(6)A高甲基化修饰,诱导其低表达,阻滞胰岛素信号转导,进而参与诱发IR。展开更多
基金partially supported by the United States Department of Agriculture National Institute of Food and Agriculture Hatch Grant (Project No.OHO01304)。
文摘Background The primary differentially methylated regions(DMRs) which are maternally hypermethylated serve as imprinting control regions(ICRs) that drive monoallelic gene expression, and these ICRs have been investigated due to their implications in mammalian development. Although a subset of genes has been identified as imprinted, in-depth comparative approach needs to be developed for identification of species-specific imprinted genes. Here, we examined DNA methylation status and allelic expression at the KBTBD6 locus across species and tissues and explored potential mechanisms of imprinting.Results Using whole-genome bisulfite sequencing and RNA-sequencing on parthenogenetic and normal porcine embryos, we identified a maternally hypermethylated DMR between the embryos at the KBTBD6 promoter Cp G island and paternal monoallelic expression of KBTBD6. Also, in analyzed domesticated mammals but not in humans, non-human primates and mice, the KBTBD6 promoter Cp G islands were methylated in oocytes and/or allelically methyl-ated in tissues, and monoallelic KBTBD6 expression was observed, indicating livestock-specific imprinting. Further analysis revealed that these Cp G islands were embedded within transcripts in porcine and bovine oocytes which coexisted with an active transcription mark and DNA methylation, implying the presence of transcription-dependent imprinting.Conclusions In this study, our comparative approach revealed an imprinted expression of the KBTBD6 gene in domesticated mammals, but not in humans, non-human primates, and mice which implicates species-specific evolution of genomic imprinting.
基金supported by the National Natural Science Foundation of China,Nos.82271283(to XC),91854115(to JW),31970044(to JW)the Natural Science Foundation of Beijing,No.7202001(to XC)the Scientific Research Project of Beijing Educational Committee,No.KM202010005022(to XC)。
文摘Salsolinol(1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline,Sal)is a catechol isoquinoline that causes neurotoxicity and shares structural similarity with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,an environmental toxin that causes Parkinson's disease.However,the mechanism by which Sal mediates dopaminergic neuronal death remains unclear.In this study,we found that Sal significantly enhanced the global level of N~6-methyladenosine(m~6A)RNA methylation in PC12 cells,mainly by inducing the downregulation of the expression of m~6A demethylases fat mass and obesity-associated protein(FTO)and alk B homolog 5(ALKBH5).RNA sequencing analysis showed that Sal downregulated the Hippo signaling pathway.The m~6A reader YTH domain-containing family protein 2(YTHDF2)promoted the degradation of m~6A-containing Yes-associated protein 1(YAP1)mRNA,which is a downstream key effector in the Hippo signaling pathway.Additionally,downregulation of YAP1 promoted autophagy,indicating that the mutual regulation between YAP1 and autophagy can lead to neurotoxicity.These findings reveal the role of Sal on m~6A RNA methylation and suggest that Sal may act as an RNA methylation inducer mediating dopaminergic neuronal death through YAP1 and autophagy.Our results provide greater insights into the neurotoxic effects of catechol isoquinolines compared with other studies and may be a reference for assessing the involvement of RNA methylation in the pathogenesis of Parkinson's disease.
基金Supported by the Sub-Project of the National Key Research and Development Program,No.2021YFC2600263.
文摘BACKGROUND N6-methyladenosine(m6A)methylation modification exists in Epstein-Barr virus(EBV)primary infection,latency,and lytic reactivation.It also modifies EBV latent genes and lytic genes.EBV-associated gastric cancer(EBVaGC)is a distinctive molecular subtype of GC.We hypothesized EBV and m6A methylation regulators interact with each other in EBVaGC to differentiate it from other types of GC.AIM To investigate the mechanisms of m6A methylation regulators in EBVaGC to determine the differentiating factors from other types of GC.METHODS First,The Cancer Gene Atlas and Gene Expression Omnibus databases were used to analyze the expression pattern of m6A methylation regulators between EBVaGC and EBV-negative GC(EBVnGC).Second,we identified Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)functional enrichment of m6A-related differentially expressed genes.We quantified the relative abundance of immune cells and inflammatory factors in the tumor microenvironment(TME).Finally,cell counting kit-8 cell proliferation test,transwell test,and flow cytometry were used to verify the effect of insulin-like growth factor binding protein 1(IGFBP1)in EBVaGC cell lines.RESULTS m6A methylation regulators were involved in the occurrence and development of EBVaGC.Compared with EBVnGC,the expression levels of m6A methylation regulators Wilms tumor 1-associated protein,RNA binding motif protein 15B,CBL proto-oncogene like 1,leucine rich pentatricopeptide repeat containing,heterogeneous nuclear ribonucleoprotein A2B1,IGFBP1,and insulin-like growth factor 2 binding protein 1 were significantly downregulated in EBVaGC(P<0.05).The overall survival rate of EBVaGC patients with a lower expression level of IGFBP1 was significantly higher(P=0.046).GO and KEGG functional enrichment analyses showed that the immunity pathways were significantly activated and rich in immune cell infiltration in EBVaGC.Compared with EBVnGC,the infiltration of activated CD4+T cells,activated CD8+T cells,monocytes,activated dendritic cells,and plasmacytoid dendritic cells were significantly upregulated in EBVaGC(P<0.001).In EBVaGC,the expression level of proinflammatory factors interleukin(IL)-17,IL-21,and interferon-γ and immunosuppressive factor IL-10 were significantly increased(P<0.05).In vitro experiments demonstrated that the expression level of IGFBP1 was significantly lower in an EBVaGC cell line(SNU719)than in an EBVnGC cell line(AGS)(P<0.05).IGFBP1 overexpression significantly attenuated proliferation and migration and promoted the apoptosis levels in SNU719.Interfering IGFBP1 significantly promoted proliferation and migration and attenuated the apoptosis levels in AGS.CONCLUSION m6A regulators could remodel the TME of EBVaGC,which is classified as an immune-inflamed phenotype and referred to as a“hot”tumor.Among these regulators,we demonstrated that IGFBP1 affected proliferation,migration,and apoptosis.
基金funded by Chinese Academy of Sciences(Strategic Priority Research Program Grant NO.XDA26040304,XDA26050102)CAS Science and Technology Service Network Initiative(KFJ-STS-ZDTP-075)Innovation Province Project(2019RS3021)。
文摘Background:Methionine or lysine has been reported to influence DNA methylation and fat metabolism,but their combined effects in N6-methyl-adenosine(m^(6)A)RNA methylation remain unclarified.The combined effects of rumen-protected methionine and lysine(RML)in a low-protein(LP)diet on lipid metabolism,m^(6)A RNA methylation,and fatty acid(FA)profiles in the liver and muscle of lambs were investigated.Sixty-three male lambs were divided into three treatment groups,three pens per group and seven lambs per pen.The lambs were fed a 14.5%crude protein(CP)diet(adequate protein[NP]),12.5%CP diet(LP),and a LP diet plus RML(LP+RML)for 60 d.Results:The results showed that the addition of RML in a LP diet tended to lower the concentrations of plasma leptin(P=0.07),triglyceride(P=0.05),and non-esterified FA(P=0.08).Feeding a LP diet increased the enzyme activity or m RNA expression of lipogenic enzymes and decreased lipolytic enzymes compared with the NP diet.This effect was reversed by supplementation of RML with a LP diet.The inclusion of RML in a LP diet affected the polyunsaturated fatty acids(PUFA),n-3 PUFA,and n-6 PUFA in the liver but not in the muscle,which might be linked with altered expression of FA desaturase-1(FADS1)and acetyl-Co A carboxylase(ACC).A LP diet supplemented with RML increased(P<0.05)total m^(6)A levels in the liver and muscle and were accompanied by decreased expression of fat mass and obesity-associated protein(FTO)and alk B homologue 5(ALKBH5).The m RNA expressions of methyltransferase-like 3(METTL3)and methyltransferase-like 14(METTL14)in the LP+RML diet group were lower than those in the other two groups.Supplementation of RML with a LP diet affected only liver YTH domain family(YTHDF2)proteins(P<0.05)and muscle YTHDF3(P=0.09),which can be explained by limited m^(6)Abinding proteins that were mediated in m RNA fate.Conclusions:Our findings showed that the inclusion of RML in a LP diet could alter fat deposition through modulations of lipogenesis and lipolysis in the liver and muscle.These changes in fat metabolism may be associated with the modification of m^(6)A RNA methylation.
文摘目的:探讨RNA m^(6)A甲基化修饰在脂肪细胞胰岛素抵抗中的作用及机制。方法:收集2型糖尿病患者术中赘余皮下脂肪组织,以非2型糖尿病患者同样组织为对照,检测组间RNA m^(6)A水平。高脂饮食诱导C57BL/6J小鼠构建胰岛素抵抗(in⁃sulin resistance,IR)模型(HFD组,n=5,60%高脂饲料喂养16周),对照组10%低脂饲料喂养16周(CD组,n=5)。模型构建成功后,取附睾周围脂肪组织行表观转录组学m^(6)A甲基化修饰芯片检测,并借助MeRIP-qPCR实验、RT-qPCR以及RNA结合蛋白免疫沉淀测定(RNA Binding Protein Immunoprecipitation Assay,RIP)实验验证胰岛素信号转导相关基因变化;进一步观察METTL3小分子抑制剂STM2457对高脂饮食诱导下小鼠胰岛素信号转导基因的影响。结果:2型糖尿病患者和小鼠IR模型脂肪组织中总体m^(6)A修饰水平均升高(患者200 ng RNA t=-8.375,P<0.001;患者100 ng RNA t=-3.722,P=0.006;患者50 ng RNA t=-4.937;P=0.001;小鼠100 ng RNA t=-3.590,P=0.023;小鼠50 ng RNA t=-2.760,P=0.025)。表观转录组学检测证实IR的脂肪组织中1175个基因发生高m^(6)A修饰,55个基因发生低m^(6)A修饰,同时有182个基因呈现高m^(6)A修饰且低表达,包括AKT2、INSR、PIK3R1、ACACA、SREBF1等5个胰岛素信号转导关键基因,其中AKT2、INSR、ACACA、SREBF1等4个基因被确证并证实其与METTL3存在直接结合,其m^(6)A修饰水平受METTL3正向调控。STM2457作用下,胰岛素敏感性提高,且AKT2、INSR、ACACA、SREBF1转录水平上调,提示IR表型改善明显。结论:高脂饮食通过METTL3诱导脂肪细胞胰岛素信号转导基因AKT2、INSR、ACACA、SREBF1发生m^(6)A高甲基化修饰,诱导其低表达,阻滞胰岛素信号转导,进而参与诱发IR。