DNA methylation, an epigenetic mechanism used by cells to control gene expression, has an important biological role in plant development and environmental fitness. Since plant DNA methylation is closely related to env...DNA methylation, an epigenetic mechanism used by cells to control gene expression, has an important biological role in plant development and environmental fitness. Since plant DNA methylation is closely related to environmental conditions, variation during the day is expected. Here, in genetically identical plants of Populus nigra clone N46, DNA methylation changes in leaves over a 24 h period were detected using the methylation-sensitive amplification polymorphism method. The results showed different DNA methylation patterns in mature poplar leaves: not only in individuals at the same time, but also in samples at each of the six time during the day. In addition, night samples had a higher percentage of methylation than in morning samples. However, no statistically significant differences were found among the samples gathered at different times. Similar results were obtained for three other P. nigra clones with different genetic backgrounds. Real time qPCR showed that the DNA methyltransferase genes Pt-MET1 and Pt-SOM1 involved in CG DNA methylation in poplar were stable over a 24 h period in leaves of P. nigra N46 compared with circadian-controlled genes. That could be part of the reason that methylation of CCGG sites is stable in those leaves. That DNA methylation differed even in genetically identical plants indicates the specificity of DNA methylation changes in their genomes. No statistically significant differences in methylation changes were found between day and night, suggesting that DNA methylation is more stable than expected and is unlikely to be involved in circadian regulation in plants.展开更多
In this study,the methylation-sensitive amplification polymorphism(MSAP)was used to compare the genomic DNA methylation level of muscle,gill and hepatopancreas of Portunus trituberculatus subjected to salinity 12 for ...In this study,the methylation-sensitive amplification polymorphism(MSAP)was used to compare the genomic DNA methylation level of muscle,gill and hepatopancreas of Portunus trituberculatus subjected to salinity 12 for 30 days to illustrate the epigenetic mechanism of osmoregulation.Thirty primers were used to analyze the difference of methylation level of different tissues.The results showed that the baseline methylation level of muscle,hepatopancreas and gill was 47.31%,22.94%and 17.69%,respectively.After exposed to low salinity stress,the methylation epiloci changed in the three tissues.Both demethylation and methylation processes occurred under low salinity stress.The methylation ratio decreased in muscle and gill but increased in hepatopancreas.These results indicated that DNA methylation is tissue-specific when P.trituberculatus responds to low salinity.展开更多
Investigation of the relationships of phenotypic and epigenetic variations might he a good way to dissect the genetic or molecular basis of phenotypic variation and plasticity in plants, Castor bean (Ricinus cornraun...Investigation of the relationships of phenotypic and epigenetic variations might he a good way to dissect the genetic or molecular basis of phenotypic variation and plasticity in plants, Castor bean (Ricinus cornraunis L), an important non-edible oilseed crop, is a mono-species genus plant in the family Euphorbiaceae. Since it displays rich phenotypic variations with low genetic diversity, castor bean is a good model to investigate the molecular basis of phenotypic and epigenetic variations. Cytosine DNA methylation represents a major molecular mechanism of epigenetic occurrence. In this study, epigenetic diversity of sixty landrace accessions collected worldwide was investigated using the methylation- sensitive amplification polymorphism (MSAP) technique, Results showed that the epigenetic diversity (based on the polymorphism of DNA methylated loci) exhibited a medium variation (Ne = 1.395, He = 0.242, I = 0.366) at the population level though the variation was great, ranging from 3,80% to 3431% among accessions. Both population structure analysis and the phylogenetic construction (using the neighbor-joining criteria) revealed that the two main clades were identified, but they did not display a distinct geographic structure, After inspecting the location of polymorphic methylated loci on genome we identified that the polymorphic methylated loci occur widely in nuclear and organelle genomes. This study provides new data to understand phenotypic and epigenetic variations in castor bean,展开更多
基金supported by National Nonprofit Institute Research Grant of Chinese Academy of Forestry(TGB2013010)
文摘DNA methylation, an epigenetic mechanism used by cells to control gene expression, has an important biological role in plant development and environmental fitness. Since plant DNA methylation is closely related to environmental conditions, variation during the day is expected. Here, in genetically identical plants of Populus nigra clone N46, DNA methylation changes in leaves over a 24 h period were detected using the methylation-sensitive amplification polymorphism method. The results showed different DNA methylation patterns in mature poplar leaves: not only in individuals at the same time, but also in samples at each of the six time during the day. In addition, night samples had a higher percentage of methylation than in morning samples. However, no statistically significant differences were found among the samples gathered at different times. Similar results were obtained for three other P. nigra clones with different genetic backgrounds. Real time qPCR showed that the DNA methyltransferase genes Pt-MET1 and Pt-SOM1 involved in CG DNA methylation in poplar were stable over a 24 h period in leaves of P. nigra N46 compared with circadian-controlled genes. That could be part of the reason that methylation of CCGG sites is stable in those leaves. That DNA methylation differed even in genetically identical plants indicates the specificity of DNA methylation changes in their genomes. No statistically significant differences in methylation changes were found between day and night, suggesting that DNA methylation is more stable than expected and is unlikely to be involved in circadian regulation in plants.
基金supported by the grants from the National Natural Science Foundation of China (No. 4147 6124)the Natural Science Foundation of Zhejiang Province (No. LY17C190005)+3 种基金the Major Agriculture Program of Ningbo (No. 2017C110007)the Ningbo Science and Technology Project (No. 2016C10037)the Open Fund of Ningbo University (No. xkzsc1505)K C Wong Magana Fund in Ningbo University
文摘In this study,the methylation-sensitive amplification polymorphism(MSAP)was used to compare the genomic DNA methylation level of muscle,gill and hepatopancreas of Portunus trituberculatus subjected to salinity 12 for 30 days to illustrate the epigenetic mechanism of osmoregulation.Thirty primers were used to analyze the difference of methylation level of different tissues.The results showed that the baseline methylation level of muscle,hepatopancreas and gill was 47.31%,22.94%and 17.69%,respectively.After exposed to low salinity stress,the methylation epiloci changed in the three tissues.Both demethylation and methylation processes occurred under low salinity stress.The methylation ratio decreased in muscle and gill but increased in hepatopancreas.These results indicated that DNA methylation is tissue-specific when P.trituberculatus responds to low salinity.
基金jointly supported by Chinese National Key Technology R & D Program (2015BAD15B02)National Natural Science Foundation of China (31661143002 and 31501034)
文摘Investigation of the relationships of phenotypic and epigenetic variations might he a good way to dissect the genetic or molecular basis of phenotypic variation and plasticity in plants, Castor bean (Ricinus cornraunis L), an important non-edible oilseed crop, is a mono-species genus plant in the family Euphorbiaceae. Since it displays rich phenotypic variations with low genetic diversity, castor bean is a good model to investigate the molecular basis of phenotypic and epigenetic variations. Cytosine DNA methylation represents a major molecular mechanism of epigenetic occurrence. In this study, epigenetic diversity of sixty landrace accessions collected worldwide was investigated using the methylation- sensitive amplification polymorphism (MSAP) technique, Results showed that the epigenetic diversity (based on the polymorphism of DNA methylated loci) exhibited a medium variation (Ne = 1.395, He = 0.242, I = 0.366) at the population level though the variation was great, ranging from 3,80% to 3431% among accessions. Both population structure analysis and the phylogenetic construction (using the neighbor-joining criteria) revealed that the two main clades were identified, but they did not display a distinct geographic structure, After inspecting the location of polymorphic methylated loci on genome we identified that the polymorphic methylated loci occur widely in nuclear and organelle genomes. This study provides new data to understand phenotypic and epigenetic variations in castor bean,