The photobrominations of 1-methylnaphthalene (1-MN) and 2-methylnaphthalene (2-MN) were investigated by using N-bromosuccinimide (NBS) as brominating agent. The results show that under nitrogen atmosphere, side-chain ...The photobrominations of 1-methylnaphthalene (1-MN) and 2-methylnaphthalene (2-MN) were investigated by using N-bromosuccinimide (NBS) as brominating agent. The results show that under nitrogen atmosphere, side-chain methyl group on 1-MN and 2-MN can be brominated selectlvely with visible light and NBS in benzene at room temperature, and that 1-MN is photobrominated easier than 2-MN.展开更多
The alkylation of methylnaphthalene(MN) with methanol in the presence of HZSM-5 is a promising route for producing 2,6-dimetylnaphthalene(2,6-DMN) with a high selectivity. However, the conversion of MN is very low...The alkylation of methylnaphthalene(MN) with methanol in the presence of HZSM-5 is a promising route for producing 2,6-dimetylnaphthalene(2,6-DMN) with a high selectivity. However, the conversion of MN is very low and the catalyst will be deactivated rapidly with increasing time on stream. In this study, the effects of the reaction pressure on the reactivity, selectivity and life of the catalyst of alkylation of MN over HZSM-5 modified by BaO were investigated. It was observed that with the enhancement of pressure, the conversion of MN increased, but the selectivity of 2,6-DMN kept unchanged, which was about 40% -42%. When the alkylation was carried out under a supercritical condition, the conversion of MN was 3-6 times higher and the life of catalyst was 25-30 times longer than those at an ambient pressure. The thermogravimetric analyses of the deactivated catalysts at different reaction pressures indicate that the amount of coke deposited on the catalysts was about 10% to 12 %, and the coke-burning reactions mainly took place in a temperature range from 720 to 860 K, and the apparent activation energies of the coke-burning catalysts at 0. 1 MPa( 10 h) and 7. 6 MPa( 108 h) were, respectively, 65.90 and 84. 72 kJ/mol. It is concluded from tile results that the supercritical condition is advantageous to enhancing the conversion of alkylation and extraction in situ, and to transporting those high molecular-weight poly-aromatic compounds so as to extend the catalyst life successively.展开更多
The effects of alkali metals (Na+,K+) on the exchange degree of Hβ zeolite under different conditions and the conversion of α(or β)-methylnaphthalene over the alkalized zeolites were studied. The results showed tha...The effects of alkali metals (Na+,K+) on the exchange degree of Hβ zeolite under different conditions and the conversion of α(or β)-methylnaphthalene over the alkalized zeolites were studied. The results showed that the H+ of Hβ zeolite is totally replaced by the Na+ of NaCl solution, while partially exchanged by the K+ of KC1 solution, there is an exchange equilibrium between the H+ and K+ for Hβ zeolite (Si/Al=17.23) and the value of equilibrium is 88.39. The exchange degree also increases with increasing the Si/Al of the samples. It was suggested that these resluts are attributed to the electrostatic field in the pore of Hβ zeolite and the nature of zeolite and the properties of alkali metal. The isomerization of α(or β)-methylnaphthalene is the main reaction over the samples and it is more favour on the proper acid-base sites of KHβ zeolite.展开更多
文摘The photobrominations of 1-methylnaphthalene (1-MN) and 2-methylnaphthalene (2-MN) were investigated by using N-bromosuccinimide (NBS) as brominating agent. The results show that under nitrogen atmosphere, side-chain methyl group on 1-MN and 2-MN can be brominated selectlvely with visible light and NBS in benzene at room temperature, and that 1-MN is photobrominated easier than 2-MN.
文摘The alkylation of methylnaphthalene(MN) with methanol in the presence of HZSM-5 is a promising route for producing 2,6-dimetylnaphthalene(2,6-DMN) with a high selectivity. However, the conversion of MN is very low and the catalyst will be deactivated rapidly with increasing time on stream. In this study, the effects of the reaction pressure on the reactivity, selectivity and life of the catalyst of alkylation of MN over HZSM-5 modified by BaO were investigated. It was observed that with the enhancement of pressure, the conversion of MN increased, but the selectivity of 2,6-DMN kept unchanged, which was about 40% -42%. When the alkylation was carried out under a supercritical condition, the conversion of MN was 3-6 times higher and the life of catalyst was 25-30 times longer than those at an ambient pressure. The thermogravimetric analyses of the deactivated catalysts at different reaction pressures indicate that the amount of coke deposited on the catalysts was about 10% to 12 %, and the coke-burning reactions mainly took place in a temperature range from 720 to 860 K, and the apparent activation energies of the coke-burning catalysts at 0. 1 MPa( 10 h) and 7. 6 MPa( 108 h) were, respectively, 65.90 and 84. 72 kJ/mol. It is concluded from tile results that the supercritical condition is advantageous to enhancing the conversion of alkylation and extraction in situ, and to transporting those high molecular-weight poly-aromatic compounds so as to extend the catalyst life successively.
文摘The effects of alkali metals (Na+,K+) on the exchange degree of Hβ zeolite under different conditions and the conversion of α(or β)-methylnaphthalene over the alkalized zeolites were studied. The results showed that the H+ of Hβ zeolite is totally replaced by the Na+ of NaCl solution, while partially exchanged by the K+ of KC1 solution, there is an exchange equilibrium between the H+ and K+ for Hβ zeolite (Si/Al=17.23) and the value of equilibrium is 88.39. The exchange degree also increases with increasing the Si/Al of the samples. It was suggested that these resluts are attributed to the electrostatic field in the pore of Hβ zeolite and the nature of zeolite and the properties of alkali metal. The isomerization of α(or β)-methylnaphthalene is the main reaction over the samples and it is more favour on the proper acid-base sites of KHβ zeolite.