We have introduced a new approach to calculate the orbital angular momentum(OAM)of bound states in continuum(BICs)and below-continuum-resonance(BCR)modes in the rotational periodic system nested inside and outside by ...We have introduced a new approach to calculate the orbital angular momentum(OAM)of bound states in continuum(BICs)and below-continuum-resonance(BCR)modes in the rotational periodic system nested inside and outside by transforming the Bloch wave number from the translational periodic system.We extensively classify and study these BICs and BCR modes,which exhibit high-quality(high-Q)factors,in different regions relative to the interface of the system.These BICs and BCR modes with a high-Q factor have been studied in detail based on distinctive structural parameters and scattering theory.The outcomes of this research break the periodic limitation of interface state-based BICs,and realize more and higher symmetry interface state-based BICs and BCR modes.Moreover,we can control the region where light is captured by adjusting the frequency,and show that the Q factor of BICs is more closely related to the ordinal number of rings and the rotational symmetry number of the system.展开更多
The exploration of novel chiral optical platforms holds both fundamental and practical importances,which have shown great promise towards applications in valleytronics,chiral sensing and nanoscopic chiroptics.In this ...The exploration of novel chiral optical platforms holds both fundamental and practical importances,which have shown great promise towards applications in valleytronics,chiral sensing and nanoscopic chiroptics.In this work,we combine two key concepts—chiral bound states in the continuum and exciton polaritons—to showcase a strong chiral response from polaritons.Using the finite element method,we numerically design a CsPbBr_(3)based metasurface that supports intrinsically chiral bound states in the continuum and verify the chirality by calculating the reflection spectrum and eigenpolarization mapping.We further demonstrate chirality-dependent exciton polariton angular dispersion arising from the strong coupling between the chiral BIC and excitons in CsPbBr_(3)by simulating the polariton angle-resolved absorption spectrum.Reciprocity analysis reveals that the polariton photoluminescence in different momentum space locations is selectively enhanced by chiral pumping light.Our results suggest a promising first step towards chiral polaritonics.展开更多
This paper describes numerical simulation of hydraulic fracturing using fracture-based continuum modeling(FBCM)of coupled geomechanical-hydrological processes to evaluate a technique for high-density fracturing and fr...This paper describes numerical simulation of hydraulic fracturing using fracture-based continuum modeling(FBCM)of coupled geomechanical-hydrological processes to evaluate a technique for high-density fracturing and fracture caging.The simulations are innovative because of modeling discrete fractures explicitly in continuum analysis.A key advantage of FBCM is that fracture initiation and propagation are modeled explicitly without changing the domain grid(i.e.no re-meshing).Further,multiple realizations of a preexisting fracture distribution can be analyzed using the same domain grid.The simulated hydraulic fracturing technique consists of pressurizing multiple wells simultaneously:initially without permeating fluids into the rock,to seed fractures uniformly and at high density in the wall rock of the wells;followed by fluid injection to propagate the seeded fracture density hydraulically.FBCM combines the ease of continuum modeling with the potential accuracy of modeling discrete fractures and fracturing explicitly.Fractures are modeled as piecewise planar based on intersections with domain elements;fracture geometry stored as continuum properties is used to calculate parameters needed to model individual fractures;and rock behavior is modeled through tensorial aggregation of the behavior of discrete fractures and unfractured rock.Simulations are presented for previously unfractured rock and for rock with preexisting fractures of horizontal,shallow-dipping,steeply dipping,or vertical orientation.Simulations of a single-well model are used to determine the pattern and spacing for a multiple-well design.The results illustrate high-density fracturing and fracture caging through simultaneous fluid injection in multiple wells:for previously unfractured rock or rock with preexisting shallow-dipping or horizontal fractures,and in situ vertical compressive stress greater than horizontal.If preexisting fractures are steeply dipping or vertical,and considering the same in situ stress condition,well pressurization without fluid permeation appears to be the only practical way to induce new fractures and contain fracturing within the target domain.展开更多
Quasi-bound state in the continuum(QBIC)resonance is gradually attracting attention and being applied in Goos-Hänchen(GH)shift enhancement due to its high quality(Q)factor and superior optical confinement.Current...Quasi-bound state in the continuum(QBIC)resonance is gradually attracting attention and being applied in Goos-Hänchen(GH)shift enhancement due to its high quality(Q)factor and superior optical confinement.Currently,symmetry-protected QBIC resonance is often achieved by breaking the geometric symmetry,but few cases are achieved by breaking the material symmetry.This paper proposes a dielectric compound grating to achieve a high Q factor and high-reflection symmetry-protectede QBIC resonance based on material asymmetry.Theoretical calculations show that the symmetry-protected QBIC resonance achieved by material asymmetry can significantly increase the GH shift up to-980 times the resonance wavelength,and the maximum GH shift is located at the reflection peak with unity reflectance.This paper provides a theoretical basis for designing and fabricating high-performance GH shift tunable metasurfaces/dielectric gratings in the future.展开更多
Continuum robots with high flexibility and compliance have the capability to operate in confined and cluttered environments. To enhance the load capacity while maintaining robot dexterity, we propose a novel non-const...Continuum robots with high flexibility and compliance have the capability to operate in confined and cluttered environments. To enhance the load capacity while maintaining robot dexterity, we propose a novel non-constant subsegment stiffness structure for tendon-driven quasi continuum robots(TDQCRs) comprising rigid-flexible coupling subsegments.Aiming at real-time control applications, we present a novel static-to-kinematic modeling approach to gain a comprehensive understanding of the TDQCR model. The analytical subsegment-based kinematics for the multisection manipulator is derived based on screw theory and product of exponentials formula, and the static model considering gravity loading,actuation loading, and robot constitutive laws is established. Additionally, the effect of tension attenuation caused by routing channel friction is considered in the robot statics, resulting in improved model accuracy. The root-mean-square error between the outputs of the static model and the experimental system is less than 1.63% of the arm length(0.5 m). By employing the proposed static model, a mapping of bending angles between the configuration space and the subsegment space is established. Furthermore, motion control experiments are conducted on our TDQCR system, and the results demonstrate the effectiveness of the static-to-kinematic model.展开更多
The main objective of this paper is to investigate the influence of inertia of nonlinear springs on the dispersion behavior of discrete monoatomic chains with lumped and distributed masses.The developed model can repr...The main objective of this paper is to investigate the influence of inertia of nonlinear springs on the dispersion behavior of discrete monoatomic chains with lumped and distributed masses.The developed model can represent the wave propagation problem in a non-homogeneous material consisting of heavy inclusions embedded in a matrix.The inclusions are idealized by lumped masses,and the matrix between adjacent inclusions is modeled by a nonlinear spring with distributed masses.Additionally,the model is capable of depicting the wave propagation in bi-material bars,wherein the first material is represented by a rigid particle and the second one is represented by a nonlinear spring with distributed masses.The discrete model of the nonlinear monoatomic chain with lumped and distributed masses is first considered,and a closed-form expression of the dispersion relation is obtained by the second-order Lindstedt-Poincare method(LPM).Next,a continuum model for the nonlinear monoatomic chain is derived directly from its discrete lattice model by a suitable continualization technique.The subsequent use of the second-order method of multiple scales(MMS)facilitates the derivation of the corresponding nonlinear dispersion relation in a closed form.The novelties of the present study consist of(i)considering the inertia of nonlinear springs on the dispersion behavior of the discrete mass-spring chains;(ii)developing the second-order LPM for the wave propagation in the discrete chains;and(iii)deriving a continuum model for the nonlinear monoatomic chains with lumped and distributed masses.Finally,a parametric study is conducted to examine the effects of the design parameters and the distributed spring mass on the nonlinear dispersion relations and phase velocities obtained from both the discrete and continuum models.These parameters include the ratio of the spring mass to the lumped mass,the nonlinear stiffness coefficient of the spring,and the wave amplitude.展开更多
Over the last decade,nuclear theory has made dramatic progress in few-body and ab initio many-body calculations.These great advances stem from chiral efective feld theory(xEFT),which provides an efcient expansion and ...Over the last decade,nuclear theory has made dramatic progress in few-body and ab initio many-body calculations.These great advances stem from chiral efective feld theory(xEFT),which provides an efcient expansion and consistent treatment of nuclear forces as inputs of modern many-body calculations,among which the in-medium similarity renormalization group(IMSRG)and its variants play a vital role.On the other hand,signifcant eforts have been made to provide a unifed description of the structure,decay,and reactions of the nuclei as open quantum systems.While a fully comprehensive and microscopic model has yet to be realized,substantial progress over recent decades has enhanced our understanding of open quantum systems around the dripline,which are often characterized by exotic structures and decay modes.To study these interesting phenomena,Gamow coupled-channel(GCC)method,in which the open quantum nature of few-body valence nucleons coupled to a deformed core,has been developed.This review focuses on the developments of the advanced IMSRG and GCC and their applications to nuclear structure and reactions.展开更多
BACKGROUND The human immunodeficiency virus(HIV)continuum of care cascade illustrates the 90-90-90 goals defined by the Joint United Nations Program on HIV/acquired immunodeficiency syndrome(UNAIDS).The care cascade i...BACKGROUND The human immunodeficiency virus(HIV)continuum of care cascade illustrates the 90-90-90 goals defined by the Joint United Nations Program on HIV/acquired immunodeficiency syndrome(UNAIDS).The care cascade includes the following five steps:Diagnosis,linkage to care,retention in care,adherence to antiretroviral therapy(ART),and viral suppression.AIM To elaborate the HIV cascade of patients diagnosed with HIV at the Nossa Senhora da Conceição Hospital(HNSC)and to determine possible local causes for the loss of patients between each step of the cascade.METHODS This retrospective cohort study included patients diagnosed with HIV infection from January 1,2015 to December 31,2016 and followed up until July 31,2019.The data were analyzed by IBM SPSS software version 25,and Poisson regression with simple robust variance was used to analyze variables in relation to each step of the cascade.Variables with P<0.20 were included in multivariable analysis,and P<0.05 was considered significant.Pearson’sχ^(2) test was used to compare the groups of patients followed up at the HNSC and those followed up at other sites.RESULTS The results were lower than those expected by the UNAIDS,with 94%of patients linked,91%retained,81%adhering to ART,and 84%in viral suppression.Age and site of follow-up were the variables with the highest statistical significance.A comparison showed that the cascade of patients from the HNSC had superior results than outpatients,with a significant difference in the last step of the cascade.CONCLUSION The specialized and continued care provided at the HNSC was associated with better results and was closer to the goals set by the UNAIDS.The development of the HIV cascade using local data allowed for the stratification and evaluation of risk factors associated with the losses occurring between each step of the cascade.展开更多
A non-linear continuum damage model was presented based on the irreversible thermodynamics framework developed by LEMAITRE and CHABOCHE. The proposed model was formulated by taking into account the influence of loadin...A non-linear continuum damage model was presented based on the irreversible thermodynamics framework developed by LEMAITRE and CHABOCHE. The proposed model was formulated by taking into account the influence of loading frequency on fatigue life. The parameters H and c are constants for frequency-independent materials, but functions of cyclic frequency for frequency-dependent materials. In addition, the expression of the model was discussed in detail at different stress ratios (R). Fatigue test data of AlZnMgCu1.5 aluminium alloy and AMg6N alloy were used to verify the proposed model. The results showed that the model possesses a good ability of predicting fatigue life at different loading frequencies and stress ratios.展开更多
陆海连续体是连接陆地生态系统和开阔海洋的过渡带,其连通性对生物迁移产生重大影响,但对陆海连续体连通性的描述和量化目前仍在探索之中。本研究利用环境DNA(eDNA)宏条形码技术,通过使用针对脊椎动物的通用引物对鱼类线粒体12S rRNA基...陆海连续体是连接陆地生态系统和开阔海洋的过渡带,其连通性对生物迁移产生重大影响,但对陆海连续体连通性的描述和量化目前仍在探索之中。本研究利用环境DNA(eDNA)宏条形码技术,通过使用针对脊椎动物的通用引物对鱼类线粒体12S rRNA基因的部分V5高变区进行扩增,获得鱼类多样性数据,并以此为基础开发了一种快捷方法来评估陆海连续体的连通性。该方法通过计算相邻站点间的Beta多样性指数来综合估算生物连通性综合指数(comprehensive index of biological connectivity,CIBC),该值范围0~1,值越大,连通性越好。2023年10月利用eDNA技术成功从长江口上海水域检测出鱼类21目,35科,86属,117种,其中支流的鱼类数量多于干流。Alpha多样性分析显示,支流的鱼类群落丰富度高于干流,但多样性略低于干流。鲤科的CIBC值显示,干流、支流连通性普遍较好。鲴科的CIBC值显示,干流上下游连通性较好。鱊科的CIBC值显示,干流上游连通性较好。虾虎鱼科的CIBC值显示,干流中上游连通性较好。整个鱼类群落的CIBC值显示,干流连通性较好,仅下游接近长江口处连通性较差,支流的连通性变化较大,干流的整体连通性优于支流。本研究方法可为研究陆海连续体连通性提供新的思路,并有助于长江口生态廊道的生态修复与综合管理。展开更多
The research is: by using Wdolkowski's Time Continuum Model throughout a lesson plan enables the teacher to increase students'motivation and help them move closer to success in a learning environment. This res...The research is: by using Wdolkowski's Time Continuum Model throughout a lesson plan enables the teacher to increase students'motivation and help them move closer to success in a learning environment. This research supports the theory that instruction is a network of interactions between the teacher and learner that promotes a successful learning experience. It identifies a three-part learning sequence-a beginning, middle and an end. Each part has two of six key motivational factors that when applied correctly by the teacher will maximize the success and continued motivation of the learner.展开更多
A nonlinear saturation mechanism for reversed shear Alfvén eigenmode(RSAE)is proposed and analyzed,and is shown to be of relevance to typical reactor parameter region.The saturation is achieved through the genera...A nonlinear saturation mechanism for reversed shear Alfvén eigenmode(RSAE)is proposed and analyzed,and is shown to be of relevance to typical reactor parameter region.The saturation is achieved through the generation of high-frequency quasi-mode due to nonlinear coupling of two RSAEs,which is then damped due to coupling with the shear Alfvén continuum,and leads to the nonlinear saturation of the primary RSAEs.An estimation of the nonlinear damping rate is also provided.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.61405058 and 62075059)the Natural Science Foundation of Hunan Province (Grant Nos.2017JJ2048 and 2020JJ4161)+2 种基金the Scientific Research Foundation of Hunan Provincial Education Department (Grant No.21A0013)the Open Project of State Key Laboratory of Advanced Optical Communication Systems and Networks of China (Grant No.2024GZKF20)the Guangdong Basic and Applied Basic Research Foundation (Grant No.2024A1515011353)。
文摘We have introduced a new approach to calculate the orbital angular momentum(OAM)of bound states in continuum(BICs)and below-continuum-resonance(BCR)modes in the rotational periodic system nested inside and outside by transforming the Bloch wave number from the translational periodic system.We extensively classify and study these BICs and BCR modes,which exhibit high-quality(high-Q)factors,in different regions relative to the interface of the system.These BICs and BCR modes with a high-Q factor have been studied in detail based on distinctive structural parameters and scattering theory.The outcomes of this research break the periodic limitation of interface state-based BICs,and realize more and higher symmetry interface state-based BICs and BCR modes.Moreover,we can control the region where light is captured by adjusting the frequency,and show that the Q factor of BICs is more closely related to the ordinal number of rings and the rotational symmetry number of the system.
基金funding support from the National Key Research and Development Program of China(Grant No.2022YFA1204700)the National Natural Science Foundation of China(Grant Nos.12020101003,92056204,and 92250301)the funding support from the National Natural Science Foundation of China(Grant No.12274034)。
文摘The exploration of novel chiral optical platforms holds both fundamental and practical importances,which have shown great promise towards applications in valleytronics,chiral sensing and nanoscopic chiroptics.In this work,we combine two key concepts—chiral bound states in the continuum and exciton polaritons—to showcase a strong chiral response from polaritons.Using the finite element method,we numerically design a CsPbBr_(3)based metasurface that supports intrinsically chiral bound states in the continuum and verify the chirality by calculating the reflection spectrum and eigenpolarization mapping.We further demonstrate chirality-dependent exciton polariton angular dispersion arising from the strong coupling between the chiral BIC and excitons in CsPbBr_(3)by simulating the polariton angle-resolved absorption spectrum.Reciprocity analysis reveals that the polariton photoluminescence in different momentum space locations is selectively enhanced by chiral pumping light.Our results suggest a promising first step towards chiral polaritonics.
文摘This paper describes numerical simulation of hydraulic fracturing using fracture-based continuum modeling(FBCM)of coupled geomechanical-hydrological processes to evaluate a technique for high-density fracturing and fracture caging.The simulations are innovative because of modeling discrete fractures explicitly in continuum analysis.A key advantage of FBCM is that fracture initiation and propagation are modeled explicitly without changing the domain grid(i.e.no re-meshing).Further,multiple realizations of a preexisting fracture distribution can be analyzed using the same domain grid.The simulated hydraulic fracturing technique consists of pressurizing multiple wells simultaneously:initially without permeating fluids into the rock,to seed fractures uniformly and at high density in the wall rock of the wells;followed by fluid injection to propagate the seeded fracture density hydraulically.FBCM combines the ease of continuum modeling with the potential accuracy of modeling discrete fractures and fracturing explicitly.Fractures are modeled as piecewise planar based on intersections with domain elements;fracture geometry stored as continuum properties is used to calculate parameters needed to model individual fractures;and rock behavior is modeled through tensorial aggregation of the behavior of discrete fractures and unfractured rock.Simulations are presented for previously unfractured rock and for rock with preexisting fractures of horizontal,shallow-dipping,steeply dipping,or vertical orientation.Simulations of a single-well model are used to determine the pattern and spacing for a multiple-well design.The results illustrate high-density fracturing and fracture caging through simultaneous fluid injection in multiple wells:for previously unfractured rock or rock with preexisting shallow-dipping or horizontal fractures,and in situ vertical compressive stress greater than horizontal.If preexisting fractures are steeply dipping or vertical,and considering the same in situ stress condition,well pressurization without fluid permeation appears to be the only practical way to induce new fractures and contain fracturing within the target domain.
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ23F040001)the National Natural Science Foundation of China(Grant No.12204446)+1 种基金the Public Welfare Technology Research Project of Zhejiang Province(Grant No.LGC22E050006)the Quzhou Science and Technology Project of China(Grant No.2022K104).
文摘Quasi-bound state in the continuum(QBIC)resonance is gradually attracting attention and being applied in Goos-Hänchen(GH)shift enhancement due to its high quality(Q)factor and superior optical confinement.Currently,symmetry-protected QBIC resonance is often achieved by breaking the geometric symmetry,but few cases are achieved by breaking the material symmetry.This paper proposes a dielectric compound grating to achieve a high Q factor and high-reflection symmetry-protectede QBIC resonance based on material asymmetry.Theoretical calculations show that the symmetry-protected QBIC resonance achieved by material asymmetry can significantly increase the GH shift up to-980 times the resonance wavelength,and the maximum GH shift is located at the reflection peak with unity reflectance.This paper provides a theoretical basis for designing and fabricating high-performance GH shift tunable metasurfaces/dielectric gratings in the future.
基金Project supported by the National Natural Science Foundation of China (Grant No.61973167)the Jiangsu Funding Program for Excellent Postdoctoral Talent。
文摘Continuum robots with high flexibility and compliance have the capability to operate in confined and cluttered environments. To enhance the load capacity while maintaining robot dexterity, we propose a novel non-constant subsegment stiffness structure for tendon-driven quasi continuum robots(TDQCRs) comprising rigid-flexible coupling subsegments.Aiming at real-time control applications, we present a novel static-to-kinematic modeling approach to gain a comprehensive understanding of the TDQCR model. The analytical subsegment-based kinematics for the multisection manipulator is derived based on screw theory and product of exponentials formula, and the static model considering gravity loading,actuation loading, and robot constitutive laws is established. Additionally, the effect of tension attenuation caused by routing channel friction is considered in the robot statics, resulting in improved model accuracy. The root-mean-square error between the outputs of the static model and the experimental system is less than 1.63% of the arm length(0.5 m). By employing the proposed static model, a mapping of bending angles between the configuration space and the subsegment space is established. Furthermore, motion control experiments are conducted on our TDQCR system, and the results demonstrate the effectiveness of the static-to-kinematic model.
基金the support of Texas A&M University at Qatar for the 2022 Sixth Cycle Seed Grant Project。
文摘The main objective of this paper is to investigate the influence of inertia of nonlinear springs on the dispersion behavior of discrete monoatomic chains with lumped and distributed masses.The developed model can represent the wave propagation problem in a non-homogeneous material consisting of heavy inclusions embedded in a matrix.The inclusions are idealized by lumped masses,and the matrix between adjacent inclusions is modeled by a nonlinear spring with distributed masses.Additionally,the model is capable of depicting the wave propagation in bi-material bars,wherein the first material is represented by a rigid particle and the second one is represented by a nonlinear spring with distributed masses.The discrete model of the nonlinear monoatomic chain with lumped and distributed masses is first considered,and a closed-form expression of the dispersion relation is obtained by the second-order Lindstedt-Poincare method(LPM).Next,a continuum model for the nonlinear monoatomic chain is derived directly from its discrete lattice model by a suitable continualization technique.The subsequent use of the second-order method of multiple scales(MMS)facilitates the derivation of the corresponding nonlinear dispersion relation in a closed form.The novelties of the present study consist of(i)considering the inertia of nonlinear springs on the dispersion behavior of the discrete mass-spring chains;(ii)developing the second-order LPM for the wave propagation in the discrete chains;and(iii)deriving a continuum model for the nonlinear monoatomic chains with lumped and distributed masses.Finally,a parametric study is conducted to examine the effects of the design parameters and the distributed spring mass on the nonlinear dispersion relations and phase velocities obtained from both the discrete and continuum models.These parameters include the ratio of the spring mass to the lumped mass,the nonlinear stiffness coefficient of the spring,and the wave amplitude.
基金National Key R&D Program of China under Grant Nos.2023YFA1606400 and 2022YFA1602303National Natural Science Foundation of China under Grants Nos.12335007,12035001,11921006,12347106,12147101,and 12205340+1 种基金Gansu Natural Science Foundation under Grant No.22JR5RA123U.S.Department of Energy(DOE),Office of Science,under SciDAC-5(NUCLEI collaboration)。
文摘Over the last decade,nuclear theory has made dramatic progress in few-body and ab initio many-body calculations.These great advances stem from chiral efective feld theory(xEFT),which provides an efcient expansion and consistent treatment of nuclear forces as inputs of modern many-body calculations,among which the in-medium similarity renormalization group(IMSRG)and its variants play a vital role.On the other hand,signifcant eforts have been made to provide a unifed description of the structure,decay,and reactions of the nuclei as open quantum systems.While a fully comprehensive and microscopic model has yet to be realized,substantial progress over recent decades has enhanced our understanding of open quantum systems around the dripline,which are often characterized by exotic structures and decay modes.To study these interesting phenomena,Gamow coupled-channel(GCC)method,in which the open quantum nature of few-body valence nucleons coupled to a deformed core,has been developed.This review focuses on the developments of the advanced IMSRG and GCC and their applications to nuclear structure and reactions.
文摘BACKGROUND The human immunodeficiency virus(HIV)continuum of care cascade illustrates the 90-90-90 goals defined by the Joint United Nations Program on HIV/acquired immunodeficiency syndrome(UNAIDS).The care cascade includes the following five steps:Diagnosis,linkage to care,retention in care,adherence to antiretroviral therapy(ART),and viral suppression.AIM To elaborate the HIV cascade of patients diagnosed with HIV at the Nossa Senhora da Conceição Hospital(HNSC)and to determine possible local causes for the loss of patients between each step of the cascade.METHODS This retrospective cohort study included patients diagnosed with HIV infection from January 1,2015 to December 31,2016 and followed up until July 31,2019.The data were analyzed by IBM SPSS software version 25,and Poisson regression with simple robust variance was used to analyze variables in relation to each step of the cascade.Variables with P<0.20 were included in multivariable analysis,and P<0.05 was considered significant.Pearson’sχ^(2) test was used to compare the groups of patients followed up at the HNSC and those followed up at other sites.RESULTS The results were lower than those expected by the UNAIDS,with 94%of patients linked,91%retained,81%adhering to ART,and 84%in viral suppression.Age and site of follow-up were the variables with the highest statistical significance.A comparison showed that the cascade of patients from the HNSC had superior results than outpatients,with a significant difference in the last step of the cascade.CONCLUSION The specialized and continued care provided at the HNSC was associated with better results and was closer to the goals set by the UNAIDS.The development of the HIV cascade using local data allowed for the stratification and evaluation of risk factors associated with the losses occurring between each step of the cascade.
文摘A non-linear continuum damage model was presented based on the irreversible thermodynamics framework developed by LEMAITRE and CHABOCHE. The proposed model was formulated by taking into account the influence of loading frequency on fatigue life. The parameters H and c are constants for frequency-independent materials, but functions of cyclic frequency for frequency-dependent materials. In addition, the expression of the model was discussed in detail at different stress ratios (R). Fatigue test data of AlZnMgCu1.5 aluminium alloy and AMg6N alloy were used to verify the proposed model. The results showed that the model possesses a good ability of predicting fatigue life at different loading frequencies and stress ratios.
文摘陆海连续体是连接陆地生态系统和开阔海洋的过渡带,其连通性对生物迁移产生重大影响,但对陆海连续体连通性的描述和量化目前仍在探索之中。本研究利用环境DNA(eDNA)宏条形码技术,通过使用针对脊椎动物的通用引物对鱼类线粒体12S rRNA基因的部分V5高变区进行扩增,获得鱼类多样性数据,并以此为基础开发了一种快捷方法来评估陆海连续体的连通性。该方法通过计算相邻站点间的Beta多样性指数来综合估算生物连通性综合指数(comprehensive index of biological connectivity,CIBC),该值范围0~1,值越大,连通性越好。2023年10月利用eDNA技术成功从长江口上海水域检测出鱼类21目,35科,86属,117种,其中支流的鱼类数量多于干流。Alpha多样性分析显示,支流的鱼类群落丰富度高于干流,但多样性略低于干流。鲤科的CIBC值显示,干流、支流连通性普遍较好。鲴科的CIBC值显示,干流上下游连通性较好。鱊科的CIBC值显示,干流上游连通性较好。虾虎鱼科的CIBC值显示,干流中上游连通性较好。整个鱼类群落的CIBC值显示,干流连通性较好,仅下游接近长江口处连通性较差,支流的连通性变化较大,干流的整体连通性优于支流。本研究方法可为研究陆海连续体连通性提供新的思路,并有助于长江口生态廊道的生态修复与综合管理。
文摘The research is: by using Wdolkowski's Time Continuum Model throughout a lesson plan enables the teacher to increase students'motivation and help them move closer to success in a learning environment. This research supports the theory that instruction is a network of interactions between the teacher and learner that promotes a successful learning experience. It identifies a three-part learning sequence-a beginning, middle and an end. Each part has two of six key motivational factors that when applied correctly by the teacher will maximize the success and continued motivation of the learner.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB0790000)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2022HSC-CIP008)National Natural Science Foundation of China(Nos.12275236 and 12261131622)。
文摘A nonlinear saturation mechanism for reversed shear Alfvén eigenmode(RSAE)is proposed and analyzed,and is shown to be of relevance to typical reactor parameter region.The saturation is achieved through the generation of high-frequency quasi-mode due to nonlinear coupling of two RSAEs,which is then damped due to coupling with the shear Alfvén continuum,and leads to the nonlinear saturation of the primary RSAEs.An estimation of the nonlinear damping rate is also provided.