We introduce and study in the present paper the general version of Gauss-type proximal point algorithm (in short GG-PPA) for solving the inclusion , where T is a set-valued mapping which is not necessarily monotone ac...We introduce and study in the present paper the general version of Gauss-type proximal point algorithm (in short GG-PPA) for solving the inclusion , where T is a set-valued mapping which is not necessarily monotone acting from a Banach space X to a subset of a Banach space Y with locally closed graph. The convergence of the GG-PPA is present here by choosing a sequence of functions with , which is Lipschitz continuous in a neighbourhood O of the origin and when T is metrically regular. More precisely, semi-local and local convergence of GG-PPA are analyzed. Moreover, we present a numerical example to validate the convergence result of GG-PPA.展开更多
In this paper, some new existence and uniqueness of common fixed points for three mappings of Lipschitz type are obtained. The conditions are greatly weaker than the classic conditions in cone metric spaces. These res...In this paper, some new existence and uniqueness of common fixed points for three mappings of Lipschitz type are obtained. The conditions are greatly weaker than the classic conditions in cone metric spaces. These results improve and generalize several wellknown comparable results in the literature. Moreover, our results are supported by some examples.展开更多
In this paper first we prove common fixed point theorems for compatible and weakly compatible maps. Secondly, we prove common fixed point theorems for weakly compatible maps along with property (E.A.) and (CLRg) prope...In this paper first we prove common fixed point theorems for compatible and weakly compatible maps. Secondly, we prove common fixed point theorems for weakly compatible maps along with property (E.A.) and (CLRg) property respectively.展开更多
The purpose of this paper is to introduce the notion of fuzzy iterated contraction maps in fuzzy metric spaces and establish some new fixed point theorems for fuzzy iterated contraction maps in fuzzy metric spaces.
In this article, we establish some common fixed point theorems for two pairs of weakly compatible mappings with (E. A.) and (CLR) property in dislocated metric space which generalize and extend some similar results in...In this article, we establish some common fixed point theorems for two pairs of weakly compatible mappings with (E. A.) and (CLR) property in dislocated metric space which generalize and extend some similar results in the literature.展开更多
In this paper, we prove a common fixed point theorem for a pair of weakly compatible mappings in fuzzy metric space using the joint common limit in the range property of mappings called (JCLR) property. An example is ...In this paper, we prove a common fixed point theorem for a pair of weakly compatible mappings in fuzzy metric space using the joint common limit in the range property of mappings called (JCLR) property. An example is also furnished which demonstrates the validity of main result. We also extend our main result to two finite families of self mappings. Our results improve and generalize results of Cho et al. [Y. J. Cho, S. Sedghi and N. Shobe, “Generalized fixed point theorems for compatible mappings with some types in fuzzy metric spaces,” Chaos, Solitons & Fractals, Vol. 39, No. 5, 2009, pp. 2233-2244.] and several known results existing in the literature.展开更多
The aim of this paper is to prove some common fixed point theorems for finite number of discontinuous,noncompatible mappings on noncomplete fuzzy metric spaces. We improve extend and generalize several fixed point the...The aim of this paper is to prove some common fixed point theorems for finite number of discontinuous,noncompatible mappings on noncomplete fuzzy metric spaces. We improve extend and generalize several fixed point theorems on metric spaces,uniform spaces and fuzzy metric spaces.We also give formulas for total number of commutativity conditions for finite number of mappings.展开更多
Let X be a convex metric space with the property that every decreasing sequence of nonenply dosed subsets of X with diameters tending to has menemptyintersection. This paper proved that if T is a mapping of a elosed c...Let X be a convex metric space with the property that every decreasing sequence of nonenply dosed subsets of X with diameters tending to has menemptyintersection. This paper proved that if T is a mapping of a elosed conver nonempty subset K of X into itself satisfying the inequality:for all x,y in K,where then T has a unique fixed point in K.展开更多
In 1975, Kramosil and Michalek [1] first introduced the concept of a fuzzy metric space. In 1994, George and Veeramani [2] slightly modified the concept of fuzzy metric space introduced by Kramosil and Michalek, defin...In 1975, Kramosil and Michalek [1] first introduced the concept of a fuzzy metric space. In 1994, George and Veeramani [2] slightly modified the concept of fuzzy metric space introduced by Kramosil and Michalek, defined a Hausdorff topology and proved some known results. In 1969, Rheinboldt [3] initiated the study of iterated contraction. The concept of iterated contraction proves to be very useful in the study of certain iterative process and has wide applicability in metric spaces. In this paper we introduce the notion of fuzzy iterated contraction maps in fuzzy metric spaces and establish some fixed point theorems for fuzzy iterated contraction maps in fuzzy metric spaces.展开更多
Our purpose is to introduce new necessary conditions for a fixed point of maps on non-metric spaces. We use a contraction map on a metric topological space and a lately published definition of limit of a function betw...Our purpose is to introduce new necessary conditions for a fixed point of maps on non-metric spaces. We use a contraction map on a metric topological space and a lately published definition of limit of a function between the metric topological space and the non-metric topological space. Then we show that we can create a function h on the non-metric space Y, h :Y →Y and present necessary conditions for a fixed point of this map on this map on Y. Therefore, this gives an opportunity to take a best conclusion in some sense, when non-metrizable matter is under consideration.展开更多
Abstract. We use the two mappings satisfying II-expansive conditions on complex valued metric spaces to construct the convergent sequences and prove that the unique limit of the sequences is the point of coincidence o...Abstract. We use the two mappings satisfying II-expansive conditions on complex valued metric spaces to construct the convergent sequences and prove that the unique limit of the sequences is the point of coincidence or common fixed point of the two mappings. Also, we discuss the uniqueness of points of coincidence or common fixed points and give the existence theorems of unique fixed points. The obtained results generalize and improve the corresponding conclusions in references.展开更多
By using weakly compatible conditions of selfmapping pairs, we prove a com-mon fixed point theorem for six mappings in generalized complete metric spaces. An example is provided to support our result.
In this paper, we obtain unique common fixed point theorems for two mappings satisfying the variable coefficient linear contraction of integral type and the implicit contraction of integral type respectively in metric...In this paper, we obtain unique common fixed point theorems for two mappings satisfying the variable coefficient linear contraction of integral type and the implicit contraction of integral type respectively in metric spaces.展开更多
In this paper, we prove common fixed point results for quadruple self-mappings satisfying an implicit function which is general enough to cover a multitude of known as well as unknown contractions. Our results modify,...In this paper, we prove common fixed point results for quadruple self-mappings satisfying an implicit function which is general enough to cover a multitude of known as well as unknown contractions. Our results modify, unify, extend and generalize many relevant results existing in literature. Also, we define the concept of compatible maps and its variants in the setting of digital metric space and establish some common fixed point results for these maps. Also, an application of the proposed results is quoted in this note.展开更多
The main purpose of the present work is to introduce necessary conditions for a map on a non-metric space, defined by using a map on a metric space, to have a fixed point.
In this paper, we prove a common fixed point theorem in Intuitionistic fuzzy metric space by using pointwise R-weak commutativity and reciprocal continuity of mappings satisfying contractive conditions.
In the present paper, we show that there exists a unique common fixed point for four self maps in a fuzzy metric space where two of the maps are reciprocally continuous and the other two maps are z-asymptotically comm...In the present paper, we show that there exists a unique common fixed point for four self maps in a fuzzy metric space where two of the maps are reciprocally continuous and the other two maps are z-asymptotically commuting.展开更多
Let χ= be a metric space and let ε be a positive real number. Then a function f: X→Y is defined to be an ε-map if and only if for all y∈Y, the diameter of f-1(y)?is at most ε. In Theorem 10 we will give a new pr...Let χ= be a metric space and let ε be a positive real number. Then a function f: X→Y is defined to be an ε-map if and only if for all y∈Y, the diameter of f-1(y)?is at most ε. In Theorem 10 we will give a new proof for the following well known fact: if χ is totally bounded, then for all ε there exists a finite number n and a continuous ε-map fε: X→Rn (here Rn is the usual n-dimensional Euclidean space endowed with the Euclidean metric). If ε is “small”, then fε is “almost injective”;and still exists even if χ has infinite covering dimension (in this case, n depends on ε, of course). Contrary to the known proofs, our proof technique is effective in the sense, that it allows establishing estimations for n in terms of ε and structural properties of χ.展开更多
We introduce the concept of generalized quasi-contraction mappings in G-partial metric spaces and prove some fixed point results in ordered G-partial metric spaces. The results generalize and extend some recent result...We introduce the concept of generalized quasi-contraction mappings in G-partial metric spaces and prove some fixed point results in ordered G-partial metric spaces. The results generalize and extend some recent results in literature.展开更多
文摘We introduce and study in the present paper the general version of Gauss-type proximal point algorithm (in short GG-PPA) for solving the inclusion , where T is a set-valued mapping which is not necessarily monotone acting from a Banach space X to a subset of a Banach space Y with locally closed graph. The convergence of the GG-PPA is present here by choosing a sequence of functions with , which is Lipschitz continuous in a neighbourhood O of the origin and when T is metrically regular. More precisely, semi-local and local convergence of GG-PPA are analyzed. Moreover, we present a numerical example to validate the convergence result of GG-PPA.
基金Supported by the Foundation of Education Ministry of Hubei Province(D20102502)
文摘In this paper, some new existence and uniqueness of common fixed points for three mappings of Lipschitz type are obtained. The conditions are greatly weaker than the classic conditions in cone metric spaces. These results improve and generalize several wellknown comparable results in the literature. Moreover, our results are supported by some examples.
文摘In this paper first we prove common fixed point theorems for compatible and weakly compatible maps. Secondly, we prove common fixed point theorems for weakly compatible maps along with property (E.A.) and (CLRg) property respectively.
文摘The purpose of this paper is to introduce the notion of fuzzy iterated contraction maps in fuzzy metric spaces and establish some new fixed point theorems for fuzzy iterated contraction maps in fuzzy metric spaces.
文摘In this article, we establish some common fixed point theorems for two pairs of weakly compatible mappings with (E. A.) and (CLR) property in dislocated metric space which generalize and extend some similar results in the literature.
文摘In this paper, we prove a common fixed point theorem for a pair of weakly compatible mappings in fuzzy metric space using the joint common limit in the range property of mappings called (JCLR) property. An example is also furnished which demonstrates the validity of main result. We also extend our main result to two finite families of self mappings. Our results improve and generalize results of Cho et al. [Y. J. Cho, S. Sedghi and N. Shobe, “Generalized fixed point theorems for compatible mappings with some types in fuzzy metric spaces,” Chaos, Solitons & Fractals, Vol. 39, No. 5, 2009, pp. 2233-2244.] and several known results existing in the literature.
文摘The aim of this paper is to prove some common fixed point theorems for finite number of discontinuous,noncompatible mappings on noncomplete fuzzy metric spaces. We improve extend and generalize several fixed point theorems on metric spaces,uniform spaces and fuzzy metric spaces.We also give formulas for total number of commutativity conditions for finite number of mappings.
文摘Let X be a convex metric space with the property that every decreasing sequence of nonenply dosed subsets of X with diameters tending to has menemptyintersection. This paper proved that if T is a mapping of a elosed conver nonempty subset K of X into itself satisfying the inequality:for all x,y in K,where then T has a unique fixed point in K.
文摘In 1975, Kramosil and Michalek [1] first introduced the concept of a fuzzy metric space. In 1994, George and Veeramani [2] slightly modified the concept of fuzzy metric space introduced by Kramosil and Michalek, defined a Hausdorff topology and proved some known results. In 1969, Rheinboldt [3] initiated the study of iterated contraction. The concept of iterated contraction proves to be very useful in the study of certain iterative process and has wide applicability in metric spaces. In this paper we introduce the notion of fuzzy iterated contraction maps in fuzzy metric spaces and establish some fixed point theorems for fuzzy iterated contraction maps in fuzzy metric spaces.
文摘Our purpose is to introduce new necessary conditions for a fixed point of maps on non-metric spaces. We use a contraction map on a metric topological space and a lately published definition of limit of a function between the metric topological space and the non-metric topological space. Then we show that we can create a function h on the non-metric space Y, h :Y →Y and present necessary conditions for a fixed point of this map on this map on Y. Therefore, this gives an opportunity to take a best conclusion in some sense, when non-metrizable matter is under consideration.
基金supported by the National Natural Science Foundation of China (No. 11361064)
文摘Abstract. We use the two mappings satisfying II-expansive conditions on complex valued metric spaces to construct the convergent sequences and prove that the unique limit of the sequences is the point of coincidence or common fixed point of the two mappings. Also, we discuss the uniqueness of points of coincidence or common fixed points and give the existence theorems of unique fixed points. The obtained results generalize and improve the corresponding conclusions in references.
文摘By using weakly compatible conditions of selfmapping pairs, we prove a com-mon fixed point theorem for six mappings in generalized complete metric spaces. An example is provided to support our result.
文摘In this paper, we obtain unique common fixed point theorems for two mappings satisfying the variable coefficient linear contraction of integral type and the implicit contraction of integral type respectively in metric spaces.
文摘In this paper, we prove common fixed point results for quadruple self-mappings satisfying an implicit function which is general enough to cover a multitude of known as well as unknown contractions. Our results modify, unify, extend and generalize many relevant results existing in literature. Also, we define the concept of compatible maps and its variants in the setting of digital metric space and establish some common fixed point results for these maps. Also, an application of the proposed results is quoted in this note.
文摘The main purpose of the present work is to introduce necessary conditions for a map on a non-metric space, defined by using a map on a metric space, to have a fixed point.
文摘In this paper, we prove a common fixed point theorem in Intuitionistic fuzzy metric space by using pointwise R-weak commutativity and reciprocal continuity of mappings satisfying contractive conditions.
文摘In the present paper, we show that there exists a unique common fixed point for four self maps in a fuzzy metric space where two of the maps are reciprocally continuous and the other two maps are z-asymptotically commuting.
文摘Let χ= be a metric space and let ε be a positive real number. Then a function f: X→Y is defined to be an ε-map if and only if for all y∈Y, the diameter of f-1(y)?is at most ε. In Theorem 10 we will give a new proof for the following well known fact: if χ is totally bounded, then for all ε there exists a finite number n and a continuous ε-map fε: X→Rn (here Rn is the usual n-dimensional Euclidean space endowed with the Euclidean metric). If ε is “small”, then fε is “almost injective”;and still exists even if χ has infinite covering dimension (in this case, n depends on ε, of course). Contrary to the known proofs, our proof technique is effective in the sense, that it allows establishing estimations for n in terms of ε and structural properties of χ.
文摘We introduce the concept of generalized quasi-contraction mappings in G-partial metric spaces and prove some fixed point results in ordered G-partial metric spaces. The results generalize and extend some recent results in literature.