期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
GLOBAL CONVERGENCE OF A CLASS OF OPTIMALLY CONDITIONED SSVM METHODS
1
作者 杨正方 夏爱生 +1 位作者 韩立兴 刘光辉 《Transactions of Tianjin University》 EI CAS 1997年第1期73-76,共4页
This paper explores the convergence of a class of optimally conditioned self scaling variable metric (OCSSVM) methods for unconstrained optimization. We show that this class of methods with Wolfe line search are glob... This paper explores the convergence of a class of optimally conditioned self scaling variable metric (OCSSVM) methods for unconstrained optimization. We show that this class of methods with Wolfe line search are globally convergent for general convex functions. 展开更多
关键词 optimally conditioned self scaling variable metric methods global convergence unconstrained optimization
下载PDF
Novel Model Using Kernel Function and Local Intensity Information for Noise Image Segmentation 被引量:2
2
作者 Gang Li Haifang Li Ling Zhang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2018年第3期303-314,共12页
It remains a challenging task to segment images that are distorted by noise and intensity inhomogeneity.To overcome these problems, in this paper, we present a novel region-based active contour model based on local in... It remains a challenging task to segment images that are distorted by noise and intensity inhomogeneity.To overcome these problems, in this paper, we present a novel region-based active contour model based on local intensity information and a kernel metric. By introducing intensity information about the local region, the proposed model can accurately segment images with intensity inhomogeneity. To enhance the model's robustness to noise and outliers, we introduce a kernel metric as its objective functional. To more accurately detect boundaries, we apply convex optimization to this new model, which uses a weighted total-variation norm given by an edge indicator function. Lastly, we use the split Bregman iteration method to obtain the numerical solution. We conducted an extensive series of experiments on both synthetic and real images to evaluate our proposed method, and the results demonstrate significant improvements in terms of efficiency and accuracy, compared with the performance of currently popular methods. 展开更多
关键词 kernel metric image segmentation local intensity information convex optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部