Assessment of rock mass quality significantly impacts the design and construction of underground and open-pit mines from the point of stability and economy.This study develops the novel Gromov-Hausdorff distance for r...Assessment of rock mass quality significantly impacts the design and construction of underground and open-pit mines from the point of stability and economy.This study develops the novel Gromov-Hausdorff distance for rock quality(GHDQR)methodology for rock mass quality rating based on multi-criteria grey metric space.It usually presents the quality of surrounding rock by classes(metric spaces)with specified properties and adequate interval-grey numbers.Measuring the distance between surrounding rock sample characteristics and existing classes represents the core of this study.The Gromov-Hausdorff distance is an especially useful discriminant function,i.e.,a classifier to calculate these distances,and assess the quality of the surrounding rock.The efficiency of the developed methodology is analyzed using the Mean Absolute Percentage Error(MAPE)technique.Seven existing methods,such as the Gaussian cloud method,Discriminant method,Mutation series method,Artificial neural network(ANN),Support vector machine(SVM),Grey wolf optimizer and Support vector classification method(GWO-SVC)and Rock mass rating method(RMR)are used for comparison with the proposed GHDQR method.The share of the highly accurate category of 85.71%clearly indicates compliance with actual values obtained by the compared methods.The results of comparisons showed that the model enables objective,efficient,and reliable assessment of rock mass quality.展开更多
In this paper, which serves as a continuation of earlier work, we generalize the idea of inequalities in metric spaces and use them to demonstrate that the incomplete metric space can be used to obtain a Banach space.
In this paper we develop the Banach contraction principle and Kannan fixed point theorem on generalized cone metric spaces. We prove a version of Suzuki and Kannan type generalizations of fixed point theorems in gener...In this paper we develop the Banach contraction principle and Kannan fixed point theorem on generalized cone metric spaces. We prove a version of Suzuki and Kannan type generalizations of fixed point theorems in generalized cone metric spaces.展开更多
In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive ...In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74-79] and a result of Suzuki [T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313-5317]. We prove, also, a fixed point theorem in the setting of G-cone metric spaces.展开更多
First, the implicit relations were given. A common fixed point theorem was proved for two mappings satisfying implicit relation functions. A further fixed point theorem was proved for mappings satisfying implicit rela...First, the implicit relations were given. A common fixed point theorem was proved for two mappings satisfying implicit relation functions. A further fixed point theorem was proved for mappings satisfying implicit relation functions on two compact metric spaces.展开更多
Two new fixed point theorems on two complete metric spaces are proved by using the concept of w -distance. One of the results is: let (X,d) and (Y,ρ) be two complete metric spaces,let p 1 be a w -distance o...Two new fixed point theorems on two complete metric spaces are proved by using the concept of w -distance. One of the results is: let (X,d) and (Y,ρ) be two complete metric spaces,let p 1 be a w -distance on X and p 2 be a w -distance on Y . If T is a continuous mapping of X into Y and S is a mapping of Y into X ,satisfying the inequalities: p 1(STx,STx′)≤c max {p 1(x,x′),p 1(x,STx),p 1(x′,STx′),p 1(x,STx′)/2,p 2(Tx,Tx′)} and p 2(TSy,TSy′)≤c max {p 2(y,y′),p 2(y,TSy),p 2(y′,TSy′),p 2(y,TSy′)/2,p 1(Sy,Sy′)} for all x,x′ in X and y,y′ in Y ,where 0≤ c<1. We have proved that ST has a unique fixed point z in X and TS has a unique fixed point w in Y . The two theorems have improved the fixed point theorems of Fisher and Namdeo,et al.展开更多
The concept of w distance on a metric space is introduced and three common fixed points theorems for commuting maps on a complete metric space are proved. These results extended fixed point theorems of Jungck a...The concept of w distance on a metric space is introduced and three common fixed points theorems for commuting maps on a complete metric space are proved. These results extended fixed point theorems of Jungck and Ciric.展开更多
In [Aghajani A, Abbas M, Roshan JR. Common fixed point of generalized weak contractive mappings in partially ordered Gb-metric spaces. Filomat, 2013, in press], using the concepts of G-metric and b-metric Aghajani et ...In [Aghajani A, Abbas M, Roshan JR. Common fixed point of generalized weak contractive mappings in partially ordered Gb-metric spaces. Filomat, 2013, in press], using the concepts of G-metric and b-metric Aghajani et al. defined a new type of metric which is called generalized b-metric or Gb-metric. In this paper, we prove a common fixed point theorem for three mappings in Gb-metric space which is not continuous. An example is presented to verify the effectiveness and applicability of our main result.展开更多
Our purpose is to introduce new necessary conditions for a fixed point of maps on non-metric spaces. We use a contraction map on a metric topological space and a lately published definition of limit of a function betw...Our purpose is to introduce new necessary conditions for a fixed point of maps on non-metric spaces. We use a contraction map on a metric topological space and a lately published definition of limit of a function between the metric topological space and the non-metric topological space. Then we show that we can create a function h on the non-metric space Y, h :Y →Y and present necessary conditions for a fixed point of this map on this map on Y. Therefore, this gives an opportunity to take a best conclusion in some sense, when non-metrizable matter is under consideration.展开更多
In this paper, using the context of complete partial metric spaces, some common fixed point results of maps that satisfy the generalized (ψ, Ф)-weak contractive conditions are obtained. Our results generalize, ext...In this paper, using the context of complete partial metric spaces, some common fixed point results of maps that satisfy the generalized (ψ, Ф)-weak contractive conditions are obtained. Our results generalize, extend, unify, enrich and complement many existing results in the literature. Example are given showing the validaty of our results.展开更多
The new notions of H-metric spaces and generalized H-KKM mappings were introduced. Some generalized H-KKM type theorems for generalized H-K-KM mappings with finitely metrically compactly closed values and finitely met...The new notions of H-metric spaces and generalized H-KKM mappings were introduced. Some generalized H-KKM type theorems for generalized H-K-KM mappings with finitely metrically compactly closed values and finitely metrically compactly open values were established in H-metric spaces. These theorems generalize recent results of Khamsi and Yuan. As applications, some Ky Fan type matching theorems for finitely metrically compactly open covers and finitely metrically compactly closed covers, fixed point theorems and minimax inequality are obtained in H-metric spaces. These results generalize a number of known results in recent literature.展开更多
In this paper, we prove that a family of self-maps {Ti,j}i,j∈N in 2-metric space has a unique common fixed point if (i) {Ti,j}i,j∈N satisfies the same type contractive condition for each j ∈ N; (ii) Tm,μ .Tn,v...In this paper, we prove that a family of self-maps {Ti,j}i,j∈N in 2-metric space has a unique common fixed point if (i) {Ti,j}i,j∈N satisfies the same type contractive condition for each j ∈ N; (ii) Tm,μ .Tn,v = Tn,v.Tm.μ for all m,n,μ,v ∈ N with μ≠v. Our main result generalizes and improves many known unique common fixed point theorems in 2-metric spaces.展开更多
In this paper, some new existence and uniqueness of common fixed points for three mappings of Lipschitz type are obtained. The conditions are greatly weaker than the classic conditions in cone metric spaces. These res...In this paper, some new existence and uniqueness of common fixed points for three mappings of Lipschitz type are obtained. The conditions are greatly weaker than the classic conditions in cone metric spaces. These results improve and generalize several wellknown comparable results in the literature. Moreover, our results are supported by some examples.展开更多
Some convergence theorems of Ishikawa type iterative sequence with errors for nonlinear general quasi-contractive mapping in convex metric spaces are proved. The results not only extend and improve the corresponding r...Some convergence theorems of Ishikawa type iterative sequence with errors for nonlinear general quasi-contractive mapping in convex metric spaces are proved. The results not only extend and improve the corresponding results of L. B. Ciric, Q. H. Liu, H. E. Rhoades and H. K. Xu, et al., but also give an affirmative answer to the open question of Rhoades-Naimpally- Singh in convex metric spaces.展开更多
In this paper, a new Browder fixed point theorem is established in the noncompact sub-admissible subsets of noncompact hyperconvex metric spaces. As application, a Ky Fan section theorem and an intersection theorem ar...In this paper, a new Browder fixed point theorem is established in the noncompact sub-admissible subsets of noncompact hyperconvex metric spaces. As application, a Ky Fan section theorem and an intersection theorem are obtained.展开更多
In this paper, we consider a notion of contractive mappings with certain conditions in cone metric spaces and obtain some results of fixed points by using some necessary conditions. The results directly improve and ge...In this paper, we consider a notion of contractive mappings with certain conditions in cone metric spaces and obtain some results of fixed points by using some necessary conditions. The results directly improve and generalize some fixed point results in metric soaces and some previous results in cone metric spaces.展开更多
In this paper, we introduce the concept of the Z-M-PN space and obtain somenew fixed point theorems in probabilistic metric spaces Meanwhile,some famous fixedpoint theorems are generalized in probabilistic metric spac...In this paper, we introduce the concept of the Z-M-PN space and obtain somenew fixed point theorems in probabilistic metric spaces Meanwhile,some famous fixedpoint theorems are generalized in probabilistic metric spaces, such a.s fixed point theorem of Schauder, Guo's theorem and fixed point theorem of Petryshyn are generalized in Menger PN-space. And fixed point theorem of Altman is also generalized in the Z-M-PN space.展开更多
In this paper, we obtain a class of common fixed point theorems for generalized Lipschitz mappings in cone metric spaces with Banach algebras without the assumption of normality of cones. The results greatly generaliz...In this paper, we obtain a class of common fixed point theorems for generalized Lipschitz mappings in cone metric spaces with Banach algebras without the assumption of normality of cones. The results greatly generalize some results in the literature. Moreover,we give an example to support the main assertions.展开更多
A class B of complex functions is introduced and several existence theorems of unique(common) fixed points for mappings satisfying a B-implicit contraction are presented.Moreover, the existence results of common fixed...A class B of complex functions is introduced and several existence theorems of unique(common) fixed points for mappings satisfying a B-implicit contraction are presented.Moreover, the existence results of common fixed points for two mappings on a nonempty set with two complex valued metrics are provided. Our outcomes generalize and improve some known results, especially, for instance, Banach contraction principle, Chatterjea-type fixed point theorem and the corresponding fixed point theorems.展开更多
文摘Assessment of rock mass quality significantly impacts the design and construction of underground and open-pit mines from the point of stability and economy.This study develops the novel Gromov-Hausdorff distance for rock quality(GHDQR)methodology for rock mass quality rating based on multi-criteria grey metric space.It usually presents the quality of surrounding rock by classes(metric spaces)with specified properties and adequate interval-grey numbers.Measuring the distance between surrounding rock sample characteristics and existing classes represents the core of this study.The Gromov-Hausdorff distance is an especially useful discriminant function,i.e.,a classifier to calculate these distances,and assess the quality of the surrounding rock.The efficiency of the developed methodology is analyzed using the Mean Absolute Percentage Error(MAPE)technique.Seven existing methods,such as the Gaussian cloud method,Discriminant method,Mutation series method,Artificial neural network(ANN),Support vector machine(SVM),Grey wolf optimizer and Support vector classification method(GWO-SVC)and Rock mass rating method(RMR)are used for comparison with the proposed GHDQR method.The share of the highly accurate category of 85.71%clearly indicates compliance with actual values obtained by the compared methods.The results of comparisons showed that the model enables objective,efficient,and reliable assessment of rock mass quality.
文摘In this paper, which serves as a continuation of earlier work, we generalize the idea of inequalities in metric spaces and use them to demonstrate that the incomplete metric space can be used to obtain a Banach space.
文摘In this paper we develop the Banach contraction principle and Kannan fixed point theorem on generalized cone metric spaces. We prove a version of Suzuki and Kannan type generalizations of fixed point theorems in generalized cone metric spaces.
基金supported by Università degli Studi di Palermo (Local University Project ex 60%)
文摘In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74-79] and a result of Suzuki [T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313-5317]. We prove, also, a fixed point theorem in the setting of G-cone metric spaces.
文摘First, the implicit relations were given. A common fixed point theorem was proved for two mappings satisfying implicit relation functions. A further fixed point theorem was proved for mappings satisfying implicit relation functions on two compact metric spaces.
文摘Two new fixed point theorems on two complete metric spaces are proved by using the concept of w -distance. One of the results is: let (X,d) and (Y,ρ) be two complete metric spaces,let p 1 be a w -distance on X and p 2 be a w -distance on Y . If T is a continuous mapping of X into Y and S is a mapping of Y into X ,satisfying the inequalities: p 1(STx,STx′)≤c max {p 1(x,x′),p 1(x,STx),p 1(x′,STx′),p 1(x,STx′)/2,p 2(Tx,Tx′)} and p 2(TSy,TSy′)≤c max {p 2(y,y′),p 2(y,TSy),p 2(y′,TSy′),p 2(y,TSy′)/2,p 1(Sy,Sy′)} for all x,x′ in X and y,y′ in Y ,where 0≤ c<1. We have proved that ST has a unique fixed point z in X and TS has a unique fixed point w in Y . The two theorems have improved the fixed point theorems of Fisher and Namdeo,et al.
文摘The concept of w distance on a metric space is introduced and three common fixed points theorems for commuting maps on a complete metric space are proved. These results extended fixed point theorems of Jungck and Ciric.
文摘In [Aghajani A, Abbas M, Roshan JR. Common fixed point of generalized weak contractive mappings in partially ordered Gb-metric spaces. Filomat, 2013, in press], using the concepts of G-metric and b-metric Aghajani et al. defined a new type of metric which is called generalized b-metric or Gb-metric. In this paper, we prove a common fixed point theorem for three mappings in Gb-metric space which is not continuous. An example is presented to verify the effectiveness and applicability of our main result.
文摘Our purpose is to introduce new necessary conditions for a fixed point of maps on non-metric spaces. We use a contraction map on a metric topological space and a lately published definition of limit of a function between the metric topological space and the non-metric topological space. Then we show that we can create a function h on the non-metric space Y, h :Y →Y and present necessary conditions for a fixed point of this map on this map on Y. Therefore, this gives an opportunity to take a best conclusion in some sense, when non-metrizable matter is under consideration.
文摘In this paper, using the context of complete partial metric spaces, some common fixed point results of maps that satisfy the generalized (ψ, Ф)-weak contractive conditions are obtained. Our results generalize, extend, unify, enrich and complement many existing results in the literature. Example are given showing the validaty of our results.
文摘The new notions of H-metric spaces and generalized H-KKM mappings were introduced. Some generalized H-KKM type theorems for generalized H-K-KM mappings with finitely metrically compactly closed values and finitely metrically compactly open values were established in H-metric spaces. These theorems generalize recent results of Khamsi and Yuan. As applications, some Ky Fan type matching theorems for finitely metrically compactly open covers and finitely metrically compactly closed covers, fixed point theorems and minimax inequality are obtained in H-metric spaces. These results generalize a number of known results in recent literature.
文摘In this paper, we prove that a family of self-maps {Ti,j}i,j∈N in 2-metric space has a unique common fixed point if (i) {Ti,j}i,j∈N satisfies the same type contractive condition for each j ∈ N; (ii) Tm,μ .Tn,v = Tn,v.Tm.μ for all m,n,μ,v ∈ N with μ≠v. Our main result generalizes and improves many known unique common fixed point theorems in 2-metric spaces.
基金Supported by the Foundation of Education Ministry of Hubei Province(D20102502)
文摘In this paper, some new existence and uniqueness of common fixed points for three mappings of Lipschitz type are obtained. The conditions are greatly weaker than the classic conditions in cone metric spaces. These results improve and generalize several wellknown comparable results in the literature. Moreover, our results are supported by some examples.
基金Foundation items:the National Ntural Science Foundation of China(19771058)the Natural Science Foundation of Education Department of Sichuan Province(01LA70)
文摘Some convergence theorems of Ishikawa type iterative sequence with errors for nonlinear general quasi-contractive mapping in convex metric spaces are proved. The results not only extend and improve the corresponding results of L. B. Ciric, Q. H. Liu, H. E. Rhoades and H. K. Xu, et al., but also give an affirmative answer to the open question of Rhoades-Naimpally- Singh in convex metric spaces.
基金Supported by the Scientific Research Foundation of Bijie University(20072001)
文摘In this paper, a new Browder fixed point theorem is established in the noncompact sub-admissible subsets of noncompact hyperconvex metric spaces. As application, a Ky Fan section theorem and an intersection theorem are obtained.
基金Supported by the Graduate Initial Fund of Hubei Normal University(2008D36)Supported by the Foundation of Education Ministry of Hubei Province(D20102502)
文摘In this paper, we consider a notion of contractive mappings with certain conditions in cone metric spaces and obtain some results of fixed points by using some necessary conditions. The results directly improve and generalize some fixed point results in metric soaces and some previous results in cone metric spaces.
文摘In this paper, we introduce the concept of the Z-M-PN space and obtain somenew fixed point theorems in probabilistic metric spaces Meanwhile,some famous fixedpoint theorems are generalized in probabilistic metric spaces, such a.s fixed point theorem of Schauder, Guo's theorem and fixed point theorem of Petryshyn are generalized in Menger PN-space. And fixed point theorem of Altman is also generalized in the Z-M-PN space.
基金Supported by the Science and Technology Research Project of the Education Department of Hubei Province(B2015137) Supported by the National Social Science Foundation of China(12BZS050)
文摘In this paper, we obtain a class of common fixed point theorems for generalized Lipschitz mappings in cone metric spaces with Banach algebras without the assumption of normality of cones. The results greatly generalize some results in the literature. Moreover,we give an example to support the main assertions.
文摘A class B of complex functions is introduced and several existence theorems of unique(common) fixed points for mappings satisfying a B-implicit contraction are presented.Moreover, the existence results of common fixed points for two mappings on a nonempty set with two complex valued metrics are provided. Our outcomes generalize and improve some known results, especially, for instance, Banach contraction principle, Chatterjea-type fixed point theorem and the corresponding fixed point theorems.