Metric measurement of digitized shapes is commonly applied in optical measuring systems.In this letter,three shape-related factors defined by the authors are used in the construction of amultiple linear regression mod...Metric measurement of digitized shapes is commonly applied in optical measuring systems.In this letter,three shape-related factors defined by the authors are used in the construction of amultiple linear regression model which is utilized to compute the circumference of the convex shapes inmillimeter unit.The model is first built upon the relationship hypothesis and then its adequacy ismathematically validated.The results of applying the developed model to the given number of convexshapes in a finite circumferential length range suggest that,in terms of percent error,the model pre-cision is to satisfaction by being within±4%.The test also shows the model’s robustness against theshape’s orientation anisotropy.展开更多
Norlund logarithmic means of multiple Walsh-Fourier series acting from space L In^d-1 L ([0, 1)d), d≥1 into space weak - LI([0,1)^d) are studied. The maximal Orlicz space such that the Norlund logarithmic means...Norlund logarithmic means of multiple Walsh-Fourier series acting from space L In^d-1 L ([0, 1)d), d≥1 into space weak - LI([0,1)^d) are studied. The maximal Orlicz space such that the Norlund logarithmic means of multiple Walsh-Fourier series for the functions from this space converge in d-dimensional measure is found.展开更多
In the software engineering literature, it is commonly believed that economies of scale do not occur in case of software Development and Enhancement Projects (D&EP). Their per-unit cost does not decrease but increa...In the software engineering literature, it is commonly believed that economies of scale do not occur in case of software Development and Enhancement Projects (D&EP). Their per-unit cost does not decrease but increase with the growth of such projects product size. Thus this is diseconomies of scale that occur in them. The significance of this phenomenon results from the fact that it is commonly considered to be one of the fundamental objective causes of their low effectiveness. This is of particular significance with regard to Business Software Systems (BSS) D&EP characterized by exceptionally low effectiveness comparing to other software D&EP. Thus the paper aims at answering the following two questions: (1) Do economies of scale really not occur in BSS D&EP? (2) If economies of scale may occur in BSS D&EP, what factors are then promoting them? These issues classify into economics problems of software engineering research and practice.展开更多
In this paper,we solve the obstacle problems on metric measure spaces with generalized Ricci lower bounds.We show the existence and Lipschitz continuity of the solutions,and then we establish some regularities of the ...In this paper,we solve the obstacle problems on metric measure spaces with generalized Ricci lower bounds.We show the existence and Lipschitz continuity of the solutions,and then we establish some regularities of the free boundaries.展开更多
Let(X,d,)be a metric measure space satisfying both the geometrically doubling and the upper doubling conditions.Let ρ∈(1,∞),0<p≤1≤q≤∞,p≠q,γ∈[1,∞)and ∈∈(0,∞).In this paper,the authors introduce the ato...Let(X,d,)be a metric measure space satisfying both the geometrically doubling and the upper doubling conditions.Let ρ∈(1,∞),0<p≤1≤q≤∞,p≠q,γ∈[1,∞)and ∈∈(0,∞).In this paper,the authors introduce the atomic Hardy space Hp,q,γ atb,ρ(μ)and the molecular Hardy space Hp,q,γ,mb,ρ∈(μ)via the discrete coefficient K(ρ),p B,S,and prove that the Calder′on-Zygmund operator is bounded from Hp,q,γ,δmb,ρ(μ)(or Hp,q,γatb,ρ(μ))into Lp(μ),and from Hp,q,γ+1atb,ρ(ρ+1)(μ)into H p,q,γ,12(δ-νp+ν)mb,ρ(μ).The boundedness of the generalized fractional integral Tβ(β∈(0,1))from Hp1,q,γ,θmb,ρ(μ)(or Hp1,q,γatb,ρ(μ))into Lp2(μ)with 1/p2=1/p1-β is also established.The authors also introduce theρ-weakly doubling condition,withρ∈(1,∞),of the measure and construct a non-doubling measure satisfying this condition.If isρ-weakly doubling,the authors further introduce the Campanato space Eα,qρ,η,γ(μ)and show that Eα,qρ,η,γ(μ)is independent of the choices ofρ,η,γand q;the authors then introduce the atomic Hardy space Hp,q,γatb,ρ(μ)and the molecular Hardy space Hp,q,γ,mb,ρ(μ),which coincide with each other;the authors finally prove that Hp,q,γatb,ρ(μ)is the predual of E1/p-1,1ρ,ρ,1(μ).Moreover,if is doubling,the authors show that Eα,qρ,η,γ(μ)and the Lipschitz space Lipα,q(μ)(q∈[1,∞)),or Hp,q,γatb,ρ(μ)and the atomic Hardy space Hp,q at(μ)(q∈(1,∞])of Coifman and Weiss coincide.Finally,if(X,d,)is an RD-space(reverse doubling space)with(X)=∞,the authors prove that Hp,q,γatb,ρ(μ),Hp,q,γ,mb,ρ(μ)and Hp,q at(μ)coincide for any q∈(1,2].In particular,when(X,d,):=(RD,||,dx)with dx being the D-dimensional Lebesgue measure,the authors show that spaces Hp,q,γatb,ρ(μ),Hp,q,γ,mb,ρ(μ),Hp,q,γatb,ρ(μ)and Hp,q,γ,mb,ρ(μ)all coincide with Hp(RD)for any q∈(1,∞).展开更多
Let(X, d, μ) be a non-homogeneous metric measure space satisfying the so-called upper doubling and geometrically doubling conditions, which includes the space of homogeneous type and the Euclidean space with the non-...Let(X, d, μ) be a non-homogeneous metric measure space satisfying the so-called upper doubling and geometrically doubling conditions, which includes the space of homogeneous type and the Euclidean space with the non-doubling measure as special cases. Let T be a multilinear Calderón-Zygmund operator and b:=(b1,..., bm) be a finite family of RBMO(μ) functions. In this paper, some weak-type multiple weighted estimates for the iterated commutator T∏bgenerated by T and b are obtained.展开更多
Let A be a symmetric and positive definite(1,1)tensor on a bounded domain Ω in an ndimensional metric measure space(R^n,<,>,e^-φdv).In this paper,we investigate the Dirichlet eigenvalue problem of a system of ...Let A be a symmetric and positive definite(1,1)tensor on a bounded domain Ω in an ndimensional metric measure space(R^n,<,>,e^-φdv).In this paper,we investigate the Dirichlet eigenvalue problem of a system of equations of elliptic operators in weighted divergence form{LA,φu+α▽(divu)-▽φdivu]=-su,inΩ,u∣aΩ=0,where LA,φ=div(A▽(·))-(A▽φ,▽(·)),α is a nonnegative constant and u is a vector-valued function.Some universal inequalities for eigenvalues of this problem are established.Moreover,as applications of these results,we give some estimates for the upper bound of sk+1 and the gap of sk+1-sk in terms of the first k eigenvalues.Our results contain some results for the Lam′e system and a system of equations of the drifting Laplacian.展开更多
Let(X,d,μ)be a metric measure space satisfying a Q-doubling condition(Q>1)and an L^(2)-Poincaréinequality.Let L=L+V be a Schrödinger operator on X,where L is a non-negative operator generalized by a Diri...Let(X,d,μ)be a metric measure space satisfying a Q-doubling condition(Q>1)and an L^(2)-Poincaréinequality.Let L=L+V be a Schrödinger operator on X,where L is a non-negative operator generalized by a Dirichlet form,and V is a non-negative Muckenhoupt weight that satisfies a reverse Hölder condition RH_(q) for some q≥(Q+1)/2.We show that a solution to(L−∂_(t)^(2))u=0 on X×R_(+) satisfies the Carleson condition,sup_(B(xB,rB))1/μ(B(xB,rB))∫_(0)^(rB)∫_(B(xB,rB))|t∇u(x,t)|^(2)dμdt/t<∞if and only if u can be represented as the Poisson integral of the Schrodinger operator L with the tracein the BMO(bounded mean oscillation)space associated with L.展开更多
Let (x, d,u) be a metric measure the upper doubling conditions. Under the weak space satisfying both the geometrically doubling and reverse doubling condition, the authors prove that the generalized homogeneous Litt...Let (x, d,u) be a metric measure the upper doubling conditions. Under the weak space satisfying both the geometrically doubling and reverse doubling condition, the authors prove that the generalized homogeneous Littlewood-Paley g-function gr (r ∈ [2, ∞)) is bounded from Hardy space H1(u) into L1(u). Moreover, the authors show that, if f ∈ RBMO(u), then [gr(f)]r is either infinite everywhere or finite almost everywhere, and in the latter case, [gr(f)]r belongs to RBLO(u) with the norm no more than ||f|| RBMO(u) multiplied by a positive constant which is independent of f. As a corollary, the authors obtain the boundedness of gr from RBMO(u) into RBLO(u). The vector valued Calderon-Zygmund theory over (X, d, u) is also established with details in this paper.展开更多
Let(X,d,μ)be a metric measure space with non-negative Ricci curvature.This paper is concerned with the boundary behavior of harmonic function on the(open)upper half-space X×R_(+).We derive that a function f of b...Let(X,d,μ)be a metric measure space with non-negative Ricci curvature.This paper is concerned with the boundary behavior of harmonic function on the(open)upper half-space X×R_(+).We derive that a function f of bounded mean oscillation(BMO)is the trace of harmonic function u(x,t)on X×R_(+),u(x,0)=f(x),whenever u satisfies the following Carleson measure condition supx_(B),r_(B) ∫_(0)^(r_(B) ) f_(B(x_(B),r_(B))) |t■u(x,t)|^(2)dμ(x)dt/t≤C<∞,where ■=(■_(x),■_(t))denotes the total gradient and B(x_(B),r_(B)) denotes the(open)ball centered at x_(B) with radius r_(B).Conversely,the above condition characterizes all the harmonic functions whose traces are in BMO space.展开更多
We study for a class of symmetric Levy processes with state space R^n the transition density pt(x) in terms of two one-parameter families of metrics, (dt)t〉o and (δt)t〉o. The first family of metrics describes...We study for a class of symmetric Levy processes with state space R^n the transition density pt(x) in terms of two one-parameter families of metrics, (dt)t〉o and (δt)t〉o. The first family of metrics describes the diagonal term pt (0); it is induced by the characteristic exponent ψ of the Levy process by dr(x, y) = √tψ(x - y). The second and new family of metrics 6t relates to √tψ through the formula exp(-δ^2t(x,y))=F[e^-tψ/pt(0)](x-y),where Y denotes the Fourier transform. Thus we obtain the following "Gaussian" representation of the tran- sition density: pt(x) = pt(O)e^-δ^2t(x,0) where pt(O) corresponds to a volume term related to √tψ and where an "exponential" decay is governed by 5t2. This gives a complete and new geometric, intrinsic interpretation of pt(x).展开更多
Let(X,d,μ)be a metric space with a Borel-measureμ,supposeμsatisfies the Ahlfors-regular condition,i.e.birs≤μu(Br(x))≤b2rs,VBr(x)CX,r>0,where bi,b2 are two positive constants and s is the volume growth exponen...Let(X,d,μ)be a metric space with a Borel-measureμ,supposeμsatisfies the Ahlfors-regular condition,i.e.birs≤μu(Br(x))≤b2rs,VBr(x)CX,r>0,where bi,b2 are two positive constants and s is the volume growth exponent.In this paper,we mainly study two things,one is to consider the best constant of the Moser-Trudinger inequality on such metric space under the condition that s is not less than 2.The other is to study the generalized Moser-Trudinger inequality with a singular Weight.展开更多
Two alternate arguments in the framework of intrinsic metrics and measures respectively of part of the proof of a famous theorem due to Qi-Keng Lu on Bergman metric with constant negative holomorphic sectional curvatu...Two alternate arguments in the framework of intrinsic metrics and measures respectively of part of the proof of a famous theorem due to Qi-Keng Lu on Bergman metric with constant negative holomorphic sectional curvature are presented.A relationship between the Lu constant and the holo- morphic sectional curvature of the Bergman metric is given.Some recent progress of the Yau’s porblem on the characterization of domain of holomorphy on which the Bergman metric is K(?)hler-Einstein is described.展开更多
We obtain some De Lellis-Topping type inequalities on the smootla metric measure spaces, some of them are as generalization of De Lellis-Topping type inequality that was proved by X. Cheng [Ann. Global Anal. Geom., 20...We obtain some De Lellis-Topping type inequalities on the smootla metric measure spaces, some of them are as generalization of De Lellis-Topping type inequality that was proved by X. Cheng [Ann. Global Anal. Geom., 2013, 43: 153-160].展开更多
基金the Ningbo Natural Science Foundation(No.2006A610016)the Foundation of National EducationMinistry for Returned Overseas Students&Scholars(SRFfor ROCS,SEM.No.2006699).
文摘Metric measurement of digitized shapes is commonly applied in optical measuring systems.In this letter,three shape-related factors defined by the authors are used in the construction of amultiple linear regression model which is utilized to compute the circumference of the convex shapes inmillimeter unit.The model is first built upon the relationship hypothesis and then its adequacy ismathematically validated.The results of applying the developed model to the given number of convexshapes in a finite circumferential length range suggest that,in terms of percent error,the model pre-cision is to satisfaction by being within±4%.The test also shows the model’s robustness against theshape’s orientation anisotropy.
基金The first author is supported by the Hungarian National Foundation for Scientific Research (OTKA), grant no. M 36511/2001, T 048780by the Szechenyi fellowship of the Hungarian Ministry of Education Szo 184/200
文摘Norlund logarithmic means of multiple Walsh-Fourier series acting from space L In^d-1 L ([0, 1)d), d≥1 into space weak - LI([0,1)^d) are studied. The maximal Orlicz space such that the Norlund logarithmic means of multiple Walsh-Fourier series for the functions from this space converge in d-dimensional measure is found.
文摘In the software engineering literature, it is commonly believed that economies of scale do not occur in case of software Development and Enhancement Projects (D&EP). Their per-unit cost does not decrease but increase with the growth of such projects product size. Thus this is diseconomies of scale that occur in them. The significance of this phenomenon results from the fact that it is commonly considered to be one of the fundamental objective causes of their low effectiveness. This is of particular significance with regard to Business Software Systems (BSS) D&EP characterized by exceptionally low effectiveness comparing to other software D&EP. Thus the paper aims at answering the following two questions: (1) Do economies of scale really not occur in BSS D&EP? (2) If economies of scale may occur in BSS D&EP, what factors are then promoting them? These issues classify into economics problems of software engineering research and practice.
基金supported by the National Key R&Dprogram of China(2021YFA1003001)。
文摘In this paper,we solve the obstacle problems on metric measure spaces with generalized Ricci lower bounds.We show the existence and Lipschitz continuity of the solutions,and then we establish some regularities of the free boundaries.
基金supported by National Natural Science Foundation of China(Grant Nos.11301534,11171027,11361020 and 11101339)Da Bei Nong Education Fund(Grant No.1101-2413002)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120003110003)the Fundamental Research Funds for Central Universities of China(Grant Nos.2012LYB26,2012CXQT09,2013YB60 and 2014KJJCA10)
文摘Let(X,d,)be a metric measure space satisfying both the geometrically doubling and the upper doubling conditions.Let ρ∈(1,∞),0<p≤1≤q≤∞,p≠q,γ∈[1,∞)and ∈∈(0,∞).In this paper,the authors introduce the atomic Hardy space Hp,q,γ atb,ρ(μ)and the molecular Hardy space Hp,q,γ,mb,ρ∈(μ)via the discrete coefficient K(ρ),p B,S,and prove that the Calder′on-Zygmund operator is bounded from Hp,q,γ,δmb,ρ(μ)(or Hp,q,γatb,ρ(μ))into Lp(μ),and from Hp,q,γ+1atb,ρ(ρ+1)(μ)into H p,q,γ,12(δ-νp+ν)mb,ρ(μ).The boundedness of the generalized fractional integral Tβ(β∈(0,1))from Hp1,q,γ,θmb,ρ(μ)(or Hp1,q,γatb,ρ(μ))into Lp2(μ)with 1/p2=1/p1-β is also established.The authors also introduce theρ-weakly doubling condition,withρ∈(1,∞),of the measure and construct a non-doubling measure satisfying this condition.If isρ-weakly doubling,the authors further introduce the Campanato space Eα,qρ,η,γ(μ)and show that Eα,qρ,η,γ(μ)is independent of the choices ofρ,η,γand q;the authors then introduce the atomic Hardy space Hp,q,γatb,ρ(μ)and the molecular Hardy space Hp,q,γ,mb,ρ(μ),which coincide with each other;the authors finally prove that Hp,q,γatb,ρ(μ)is the predual of E1/p-1,1ρ,ρ,1(μ).Moreover,if is doubling,the authors show that Eα,qρ,η,γ(μ)and the Lipschitz space Lipα,q(μ)(q∈[1,∞)),or Hp,q,γatb,ρ(μ)and the atomic Hardy space Hp,q at(μ)(q∈(1,∞])of Coifman and Weiss coincide.Finally,if(X,d,)is an RD-space(reverse doubling space)with(X)=∞,the authors prove that Hp,q,γatb,ρ(μ),Hp,q,γ,mb,ρ(μ)and Hp,q at(μ)coincide for any q∈(1,2].In particular,when(X,d,):=(RD,||,dx)with dx being the D-dimensional Lebesgue measure,the authors show that spaces Hp,q,γatb,ρ(μ),Hp,q,γ,mb,ρ(μ),Hp,q,γatb,ρ(μ)and Hp,q,γ,mb,ρ(μ)all coincide with Hp(RD)for any q∈(1,∞).
基金supported by National Natural Science Foundation of China(Grant Nos.11301534 and 11571039)。
文摘Let(X, d, μ) be a non-homogeneous metric measure space satisfying the so-called upper doubling and geometrically doubling conditions, which includes the space of homogeneous type and the Euclidean space with the non-doubling measure as special cases. Let T be a multilinear Calderón-Zygmund operator and b:=(b1,..., bm) be a finite family of RBMO(μ) functions. In this paper, some weak-type multiple weighted estimates for the iterated commutator T∏bgenerated by T and b are obtained.
基金supported by the National Natural Science Foundation of China(Grant Nos.1100113011571361 and 11831005)the Fundamental Research Funds for the Central Universities(Grant No.30917011335)。
文摘Let A be a symmetric and positive definite(1,1)tensor on a bounded domain Ω in an ndimensional metric measure space(R^n,<,>,e^-φdv).In this paper,we investigate the Dirichlet eigenvalue problem of a system of equations of elliptic operators in weighted divergence form{LA,φu+α▽(divu)-▽φdivu]=-su,inΩ,u∣aΩ=0,where LA,φ=div(A▽(·))-(A▽φ,▽(·)),α is a nonnegative constant and u is a vector-valued function.Some universal inequalities for eigenvalues of this problem are established.Moreover,as applications of these results,we give some estimates for the upper bound of sk+1 and the gap of sk+1-sk in terms of the first k eigenvalues.Our results contain some results for the Lam′e system and a system of equations of the drifting Laplacian.
基金supported by National Natural Science Foundation of China(Grant Nos.11922114,11671039 and 11771043)。
文摘Let(X,d,μ)be a metric measure space satisfying a Q-doubling condition(Q>1)and an L^(2)-Poincaréinequality.Let L=L+V be a Schrödinger operator on X,where L is a non-negative operator generalized by a Dirichlet form,and V is a non-negative Muckenhoupt weight that satisfies a reverse Hölder condition RH_(q) for some q≥(Q+1)/2.We show that a solution to(L−∂_(t)^(2))u=0 on X×R_(+) satisfies the Carleson condition,sup_(B(xB,rB))1/μ(B(xB,rB))∫_(0)^(rB)∫_(B(xB,rB))|t∇u(x,t)|^(2)dμdt/t<∞if and only if u can be represented as the Poisson integral of the Schrodinger operator L with the tracein the BMO(bounded mean oscillation)space associated with L.
基金Supported by National Natural Science Foundation of China(Grant No.11471040)the Fundamental Research Funds for the Central Universities(Grant No.2014KJJCA10)
文摘Let (x, d,u) be a metric measure the upper doubling conditions. Under the weak space satisfying both the geometrically doubling and reverse doubling condition, the authors prove that the generalized homogeneous Littlewood-Paley g-function gr (r ∈ [2, ∞)) is bounded from Hardy space H1(u) into L1(u). Moreover, the authors show that, if f ∈ RBMO(u), then [gr(f)]r is either infinite everywhere or finite almost everywhere, and in the latter case, [gr(f)]r belongs to RBLO(u) with the norm no more than ||f|| RBMO(u) multiplied by a positive constant which is independent of f. As a corollary, the authors obtain the boundedness of gr from RBMO(u) into RBLO(u). The vector valued Calderon-Zygmund theory over (X, d, u) is also established with details in this paper.
文摘Let(X,d,μ)be a metric measure space with non-negative Ricci curvature.This paper is concerned with the boundary behavior of harmonic function on the(open)upper half-space X×R_(+).We derive that a function f of bounded mean oscillation(BMO)is the trace of harmonic function u(x,t)on X×R_(+),u(x,0)=f(x),whenever u satisfies the following Carleson measure condition supx_(B),r_(B) ∫_(0)^(r_(B) ) f_(B(x_(B),r_(B))) |t■u(x,t)|^(2)dμ(x)dt/t≤C<∞,where ■=(■_(x),■_(t))denotes the total gradient and B(x_(B),r_(B)) denotes the(open)ball centered at x_(B) with radius r_(B).Conversely,the above condition characterizes all the harmonic functions whose traces are in BMO space.
文摘We study for a class of symmetric Levy processes with state space R^n the transition density pt(x) in terms of two one-parameter families of metrics, (dt)t〉o and (δt)t〉o. The first family of metrics describes the diagonal term pt (0); it is induced by the characteristic exponent ψ of the Levy process by dr(x, y) = √tψ(x - y). The second and new family of metrics 6t relates to √tψ through the formula exp(-δ^2t(x,y))=F[e^-tψ/pt(0)](x-y),where Y denotes the Fourier transform. Thus we obtain the following "Gaussian" representation of the tran- sition density: pt(x) = pt(O)e^-δ^2t(x,0) where pt(O) corresponds to a volume term related to √tψ and where an "exponential" decay is governed by 5t2. This gives a complete and new geometric, intrinsic interpretation of pt(x).
文摘Let(X,d,μ)be a metric space with a Borel-measureμ,supposeμsatisfies the Ahlfors-regular condition,i.e.birs≤μu(Br(x))≤b2rs,VBr(x)CX,r>0,where bi,b2 are two positive constants and s is the volume growth exponent.In this paper,we mainly study two things,one is to consider the best constant of the Moser-Trudinger inequality on such metric space under the condition that s is not less than 2.The other is to study the generalized Moser-Trudinger inequality with a singular Weight.
基金This work was partially supported by Research Grants Council of the Hong Kong SAR,China(Grant No.HKUT017/05P)
文摘Two alternate arguments in the framework of intrinsic metrics and measures respectively of part of the proof of a famous theorem due to Qi-Keng Lu on Bergman metric with constant negative holomorphic sectional curvature are presented.A relationship between the Lu constant and the holo- morphic sectional curvature of the Bergman metric is given.Some recent progress of the Yau’s porblem on the characterization of domain of holomorphy on which the Bergman metric is K(?)hler-Einstein is described.
文摘We obtain some De Lellis-Topping type inequalities on the smootla metric measure spaces, some of them are as generalization of De Lellis-Topping type inequality that was proved by X. Cheng [Ann. Global Anal. Geom., 2013, 43: 153-160].