Metro is an important form of public transport in Shanghai.Based on the metro card data,we conduct the cluster analysis of Shanghai metro stations according to the pattern of passenger flow changing with time.Then the...Metro is an important form of public transport in Shanghai.Based on the metro card data,we conduct the cluster analysis of Shanghai metro stations according to the pattern of passenger flow changing with time.Then the characteristics of travel time and surrounding land use are investigated for different types of stations to explore the relationship between urban land-use characteristics and travel activities reflected by passenger flow at metro stations.It is found that the passenger flow pattern of metro stations is closely related to the location conditions of stations and its surrounding land-use patterns.Based on various characteristics,285 metro stations are classified into four types,including residential-oriented stations,employmentoriented stations,employment-residence-oriented stations,and integrated functionaloriented stations,reflecting the interaction between spontaneous travel behavior and urban land-use characteristics and providing a reference for optimizing the urban functional structure and the spatial allocation of facilities.展开更多
Metro system has experienced the global rapid rise over the past decades. However,few studies have paid attention to the evolution in system usage with the network expanding. The paper's main objectives are to ana...Metro system has experienced the global rapid rise over the past decades. However,few studies have paid attention to the evolution in system usage with the network expanding. The paper's main objectives are to analyze passenger flow characteristics and evaluate travel time reliability for the Nanjing Metro network by visualizing the smart card data of April 2014,April 2015 and April 2016. We performed visualization techniques and comparative analyses to examine the changes in system usage between before and after the system expansion. Specifically,workdays,holidays and weekends were specially segmented for analysis.Results showed that workdays had obvious morning and evening peak hours due to daily commuting,while no obvious peak hours existed in weekends and holidays and the daily traffic was evenly distributed. Besides,some metro stations had a serious directional imbalance,especially during the morning and evening peak hours of workdays. Serious unreliability occurred in morning peaks on workdays and the reliability of new lines was relatively low,meanwhile,new stations had negative effects on exiting stations in terms of reliability. Monitoring the evolution of system usage over years enables the identification of system performance and can serve as an input for improving the metro system quality.展开更多
The advent of the big data era has provided many types of transportation datasets,such as metro smart card data,for studying residents’mobility and understanding how their mobility has been shaped and is shaping the ...The advent of the big data era has provided many types of transportation datasets,such as metro smart card data,for studying residents’mobility and understanding how their mobility has been shaped and is shaping the urban space.In this paper,we use metro smart card data from two Chinese metropolises,Shanghai and Shenzhen.Five metro mobility indicators are introduced,and association rules are established to explore the mobility patterns.The proportion of people entering and exiting the station is used to measure the jobs-housing balance.It is found that the average travel distance and duration of Shanghai passengers are higher than those of Shenzhen,and the proportion of metro commuters in Shanghai is higher than that of Shenzhen.The jobs-housing spatial relationship in Shenzhen based on metro travel is more balanced than that in Shanghai.The fundamental reason for the differences between the two cities is the difference in urban morphology.Compared with the monocentric structure of Shanghai,the polycentric structure of Shenzhen results in more scattered travel hotspots and more diverse travel routes,which helps Shenzhen to have a better jobs-housing balance.This paper fills a gap in comparative research among Chinese cities based on transportation big data analysis.The results provide support for planning metro routes,adjusting urban structure and land use to form a more reasonable metro network,and balancing the jobs-housing spatial relationship.展开更多
文摘Metro is an important form of public transport in Shanghai.Based on the metro card data,we conduct the cluster analysis of Shanghai metro stations according to the pattern of passenger flow changing with time.Then the characteristics of travel time and surrounding land use are investigated for different types of stations to explore the relationship between urban land-use characteristics and travel activities reflected by passenger flow at metro stations.It is found that the passenger flow pattern of metro stations is closely related to the location conditions of stations and its surrounding land-use patterns.Based on various characteristics,285 metro stations are classified into four types,including residential-oriented stations,employmentoriented stations,employment-residence-oriented stations,and integrated functionaloriented stations,reflecting the interaction between spontaneous travel behavior and urban land-use characteristics and providing a reference for optimizing the urban functional structure and the spatial allocation of facilities.
基金Sponsored by Projects of International Cooperation and Exchange of the National Natural Science Foundation of China(Grant No.51561135003)Key Project of National Natural Science Foundation of China(Grant No.51338003)
文摘Metro system has experienced the global rapid rise over the past decades. However,few studies have paid attention to the evolution in system usage with the network expanding. The paper's main objectives are to analyze passenger flow characteristics and evaluate travel time reliability for the Nanjing Metro network by visualizing the smart card data of April 2014,April 2015 and April 2016. We performed visualization techniques and comparative analyses to examine the changes in system usage between before and after the system expansion. Specifically,workdays,holidays and weekends were specially segmented for analysis.Results showed that workdays had obvious morning and evening peak hours due to daily commuting,while no obvious peak hours existed in weekends and holidays and the daily traffic was evenly distributed. Besides,some metro stations had a serious directional imbalance,especially during the morning and evening peak hours of workdays. Serious unreliability occurred in morning peaks on workdays and the reliability of new lines was relatively low,meanwhile,new stations had negative effects on exiting stations in terms of reliability. Monitoring the evolution of system usage over years enables the identification of system performance and can serve as an input for improving the metro system quality.
基金National Key R&D Program of China(No.2019YFB2103102)Hong Kong Polytechnic University(No.CD06,P0042540)。
文摘The advent of the big data era has provided many types of transportation datasets,such as metro smart card data,for studying residents’mobility and understanding how their mobility has been shaped and is shaping the urban space.In this paper,we use metro smart card data from two Chinese metropolises,Shanghai and Shenzhen.Five metro mobility indicators are introduced,and association rules are established to explore the mobility patterns.The proportion of people entering and exiting the station is used to measure the jobs-housing balance.It is found that the average travel distance and duration of Shanghai passengers are higher than those of Shenzhen,and the proportion of metro commuters in Shanghai is higher than that of Shenzhen.The jobs-housing spatial relationship in Shenzhen based on metro travel is more balanced than that in Shanghai.The fundamental reason for the differences between the two cities is the difference in urban morphology.Compared with the monocentric structure of Shanghai,the polycentric structure of Shenzhen results in more scattered travel hotspots and more diverse travel routes,which helps Shenzhen to have a better jobs-housing balance.This paper fills a gap in comparative research among Chinese cities based on transportation big data analysis.The results provide support for planning metro routes,adjusting urban structure and land use to form a more reasonable metro network,and balancing the jobs-housing spatial relationship.