This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfac...This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfaction. It addresses a significant research gap in understanding metro passengers’ dynamics across cultural and geographical contexts. It employs questionnaires, field observations, and advanced data analysis techniques like association rule mining and neural network modeling. Key findings include a correlation between rainy weather, shorter waiting times, and higher arrival volumes. Neural network models showed high predictive accuracy, with waiting time, metro satisfaction, and weather being significant factors in Lagos Light Rail Blue Line Metro. In contrast, arrival patterns, weather, and time of day were more influential in Wuhan Metro Line 5. Results suggest that improving metro satisfaction and reducing waiting times could increase arrival volumes in Lagos Metro while adjusting schedules for weather and peak times could optimize flow in Wuhan Metro. These insights are valuable for transportation planning, passenger arrival volume management, and enhancing user experiences, potentially benefiting urban transportation sustainability and development goals.展开更多
We demonstrate the transmission of directly modulated 10-Gb/s WDM signals over 320 km of negative dispersion fiber (dispersion: -2.5 ps/km/nm @1550 nm) without dispersion compensation. The results indicate that a regi...We demonstrate the transmission of directly modulated 10-Gb/s WDM signals over 320 km of negative dispersion fiber (dispersion: -2.5 ps/km/nm @1550 nm) without dispersion compensation. The results indicate that a regional metro WDM network could be implemented cost-effectively by using the proposed negative dispersion fiber and direct modulated lasers.展开更多
Evaluating the adaptability of cantilever boring machine(CBM) through in-depth excavation and analysis of tunnel excavation data and rock mass parameters is the premise of mechanical design and efficient excavation in...Evaluating the adaptability of cantilever boring machine(CBM) through in-depth excavation and analysis of tunnel excavation data and rock mass parameters is the premise of mechanical design and efficient excavation in the field of underground space engineering.This paper presented a case study of tunnelling performance prediction method of CBM in sedimentary hard-rock tunnel of Karst landform type by using tunneling data and surrounding rock parameters.The uniaxial compressive strength(UCS),rock integrity factor(Kv),basic quality index([BQ]),rock quality index RQD,brazilian tensile strength(BTS) and brittleness index(BI) were introduced to construct a performance prediction database based on the hard-rock tunnel of Guiyang Metro Line 1 and Line 3,and then established the performance prediction model of cantilever boring machine.Then the deep belief network(DBN) was introduced into the performance prediction model,and the reliability of performance prediction model was verified by combining with engineering data.The study showed that the influence degree of surrounding rock parameters on the tunneling performance of the cantilever boring machine is UCS > [BQ] > BTS >RQD > Kv > BI.The performance prediction model shows that the instantaneous cutting rate(ICR) has a good correlation with the surrounding rock parameters,and the predicting model accuracy is related to the reliability of construction data.The prediction of limestone and dolomite sections of Line 3 based on the DBN performance prediction model shows that the measured ICR and predicted ICR is consistent and the built performance prediction model is reliable.The research results have theoretical reference significance for the applicability analysis and mechanical selection of cantilever boring machine for hard rock tunnel.展开更多
The current situation of Cairo metro stations,especially terminal stations and its surrounding areas,has bad financial revenue and bad effect on environment.It is a major factor in increasing of noise,traffic jam and ...The current situation of Cairo metro stations,especially terminal stations and its surrounding areas,has bad financial revenue and bad effect on environment.It is a major factor in increasing of noise,traffic jam and air pollution,in addition to,spreading of street vendors,collecting of random parking around these terminal stations.Thus,this paper proposed a methodology helping to apply multilateral investments in metro terminal stations for getting extra profits and decreasing the bad environmental effect of terminal stations and its surrounding areas.Hence,Helwan-Metro station on line 1 has been considered as a case study.Number of passengers at peak time,their ages,and their destinations,have been considered by making a field survey and a questionnaire.After collecting data and finalizing the surveying questionnaire,primary studies were done to modify and introduce a new proposal for Helwan-Metro station.The initial cost of the proposed project is predicted by using Artificial Neural Network technique using Just NN software.The investment feasibility achieved by consideration of Life Cycle Cost analysis and calculation of Net Present Value(NPV)of the proposed project.展开更多
We discuss the concept of coarse wavelength-division multiplexing (CWDM) for metro networks. After reviewing the requirements on components such as lasers and fiber, we propose different architectures for a flexible u...We discuss the concept of coarse wavelength-division multiplexing (CWDM) for metro networks. After reviewing the requirements on components such as lasers and fiber, we propose different architectures for a flexible upgrade of existing CWDM systems.展开更多
Understanding the causation of accidents is essential to promote metro operation safety.In terms of 243 reported metro operation accident cases in China, a directed weighted network was constructed based on complex ne...Understanding the causation of accidents is essential to promote metro operation safety.In terms of 243 reported metro operation accident cases in China, a directed weighted network was constructed based on complex network theory, where nodes and directed edges denotes factors and event chains respectively. To reveal the key causal factors, the topological characteristics of metro operation accident network(MOAN) were analyzed from both global and local views. The results show that facility-type factors are more closely related to the occurrence of the accidents from the perspectives of average path length and cascading effects. Accident types like train delay and train suspension are the great risk recipients. Key causal factors with large out-degree, out-strength, betweenness centrality and cluster coefficient, such as communication and signal failure, vehicle failure and piling into the train should be noticed. The research framework proposed in the paper is not only applicable to China’s metro operation system, but also appropriate for other transportation system safety studies.展开更多
针对地铁车轮磨耗数据时间跨度较长引起的长期依赖问题,为了进一步提升预测精度,提出一种将麻雀搜索算法(sparrow search algorithm,SSA)优化双向长短期记忆网络(bidirectional long short term memory,Bi LSTM)的改进BiLSTM(SSA-BiLSTM...针对地铁车轮磨耗数据时间跨度较长引起的长期依赖问题,为了进一步提升预测精度,提出一种将麻雀搜索算法(sparrow search algorithm,SSA)优化双向长短期记忆网络(bidirectional long short term memory,Bi LSTM)的改进BiLSTM(SSA-BiLSTM)网络模型,用于地铁车轮磨耗预测。首先,利用麻雀搜索算法对双向长短期记忆网络算法的神经元个数、迭代次数、输入批量和学习率等超参数在给定范围内进行寻优,得到参数最优值;然后,以参数最优值来构建改进BiLSTM网络模型,对车轮磨耗进行预测分析;最后,以车轮踏面磨耗和轮缘磨耗作为研究对象,将某地铁1车厢1号车轮的现场实测历史磨耗数据作为输入,对该模型进行训练及验证分析,并与多层感知机(multilayer perceptron,MLP)、LSTM、BiLSTM以及SSA-LSTM模型的预测结果进行对比。研究结果表明:SSA-Bi-LSTM模型的车轮磨耗预测精度更高,与LSTM、BiLSTM以及SSA-LSTM网络模型相比,踏面磨耗的平均绝对百分误差(mean absolute percentage error,MAPE)分别降低了13.28%、10.32%、1.47%,轮缘磨耗分别降低了9.5%、0.46%、0.02%;分别对同一地铁2号、4号车厢的1号位置车轮磨耗进行预测,并与磨耗实测数据进行对比,踏面磨耗的平均绝对百分比误差分别为1.34%、1.42%,轮缘磨耗的平均绝对百分比误差分别为0.18%、0.19%,验证了本文所提模型具有良好的泛化性,为地铁轮对智能化管理提供理论支持,延长车轮使用寿命。展开更多
文摘This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfaction. It addresses a significant research gap in understanding metro passengers’ dynamics across cultural and geographical contexts. It employs questionnaires, field observations, and advanced data analysis techniques like association rule mining and neural network modeling. Key findings include a correlation between rainy weather, shorter waiting times, and higher arrival volumes. Neural network models showed high predictive accuracy, with waiting time, metro satisfaction, and weather being significant factors in Lagos Light Rail Blue Line Metro. In contrast, arrival patterns, weather, and time of day were more influential in Wuhan Metro Line 5. Results suggest that improving metro satisfaction and reducing waiting times could increase arrival volumes in Lagos Metro while adjusting schedules for weather and peak times could optimize flow in Wuhan Metro. These insights are valuable for transportation planning, passenger arrival volume management, and enhancing user experiences, potentially benefiting urban transportation sustainability and development goals.
文摘We demonstrate the transmission of directly modulated 10-Gb/s WDM signals over 320 km of negative dispersion fiber (dispersion: -2.5 ps/km/nm @1550 nm) without dispersion compensation. The results indicate that a regional metro WDM network could be implemented cost-effectively by using the proposed negative dispersion fiber and direct modulated lasers.
基金National Natural Science Foundation of China (Grant No.52178393)the Science and Technology Innovation Team of Shaanxi Innovation Capability Support Plan (Grant No.2020TD005)Science and Technology Innovation Project of China Railway Construction Bridge Engineering Bureau Group Co.,Ltd.(Grant No.DQJ-2020-B07)。
文摘Evaluating the adaptability of cantilever boring machine(CBM) through in-depth excavation and analysis of tunnel excavation data and rock mass parameters is the premise of mechanical design and efficient excavation in the field of underground space engineering.This paper presented a case study of tunnelling performance prediction method of CBM in sedimentary hard-rock tunnel of Karst landform type by using tunneling data and surrounding rock parameters.The uniaxial compressive strength(UCS),rock integrity factor(Kv),basic quality index([BQ]),rock quality index RQD,brazilian tensile strength(BTS) and brittleness index(BI) were introduced to construct a performance prediction database based on the hard-rock tunnel of Guiyang Metro Line 1 and Line 3,and then established the performance prediction model of cantilever boring machine.Then the deep belief network(DBN) was introduced into the performance prediction model,and the reliability of performance prediction model was verified by combining with engineering data.The study showed that the influence degree of surrounding rock parameters on the tunneling performance of the cantilever boring machine is UCS > [BQ] > BTS >RQD > Kv > BI.The performance prediction model shows that the instantaneous cutting rate(ICR) has a good correlation with the surrounding rock parameters,and the predicting model accuracy is related to the reliability of construction data.The prediction of limestone and dolomite sections of Line 3 based on the DBN performance prediction model shows that the measured ICR and predicted ICR is consistent and the built performance prediction model is reliable.The research results have theoretical reference significance for the applicability analysis and mechanical selection of cantilever boring machine for hard rock tunnel.
文摘The current situation of Cairo metro stations,especially terminal stations and its surrounding areas,has bad financial revenue and bad effect on environment.It is a major factor in increasing of noise,traffic jam and air pollution,in addition to,spreading of street vendors,collecting of random parking around these terminal stations.Thus,this paper proposed a methodology helping to apply multilateral investments in metro terminal stations for getting extra profits and decreasing the bad environmental effect of terminal stations and its surrounding areas.Hence,Helwan-Metro station on line 1 has been considered as a case study.Number of passengers at peak time,their ages,and their destinations,have been considered by making a field survey and a questionnaire.After collecting data and finalizing the surveying questionnaire,primary studies were done to modify and introduce a new proposal for Helwan-Metro station.The initial cost of the proposed project is predicted by using Artificial Neural Network technique using Just NN software.The investment feasibility achieved by consideration of Life Cycle Cost analysis and calculation of Net Present Value(NPV)of the proposed project.
文摘We discuss the concept of coarse wavelength-division multiplexing (CWDM) for metro networks. After reviewing the requirements on components such as lasers and fiber, we propose different architectures for a flexible upgrade of existing CWDM systems.
基金Supported by the National Natural Science Foundation of China(NSFC)(71801139)Qingdao Social Science Planning Project(QDSKL1801157)Key Research and Development Plan(Soft Science Project)of Shandong Province(2019RKB01118)。
文摘Understanding the causation of accidents is essential to promote metro operation safety.In terms of 243 reported metro operation accident cases in China, a directed weighted network was constructed based on complex network theory, where nodes and directed edges denotes factors and event chains respectively. To reveal the key causal factors, the topological characteristics of metro operation accident network(MOAN) were analyzed from both global and local views. The results show that facility-type factors are more closely related to the occurrence of the accidents from the perspectives of average path length and cascading effects. Accident types like train delay and train suspension are the great risk recipients. Key causal factors with large out-degree, out-strength, betweenness centrality and cluster coefficient, such as communication and signal failure, vehicle failure and piling into the train should be noticed. The research framework proposed in the paper is not only applicable to China’s metro operation system, but also appropriate for other transportation system safety studies.
文摘针对地铁车轮磨耗数据时间跨度较长引起的长期依赖问题,为了进一步提升预测精度,提出一种将麻雀搜索算法(sparrow search algorithm,SSA)优化双向长短期记忆网络(bidirectional long short term memory,Bi LSTM)的改进BiLSTM(SSA-BiLSTM)网络模型,用于地铁车轮磨耗预测。首先,利用麻雀搜索算法对双向长短期记忆网络算法的神经元个数、迭代次数、输入批量和学习率等超参数在给定范围内进行寻优,得到参数最优值;然后,以参数最优值来构建改进BiLSTM网络模型,对车轮磨耗进行预测分析;最后,以车轮踏面磨耗和轮缘磨耗作为研究对象,将某地铁1车厢1号车轮的现场实测历史磨耗数据作为输入,对该模型进行训练及验证分析,并与多层感知机(multilayer perceptron,MLP)、LSTM、BiLSTM以及SSA-LSTM模型的预测结果进行对比。研究结果表明:SSA-Bi-LSTM模型的车轮磨耗预测精度更高,与LSTM、BiLSTM以及SSA-LSTM网络模型相比,踏面磨耗的平均绝对百分误差(mean absolute percentage error,MAPE)分别降低了13.28%、10.32%、1.47%,轮缘磨耗分别降低了9.5%、0.46%、0.02%;分别对同一地铁2号、4号车厢的1号位置车轮磨耗进行预测,并与磨耗实测数据进行对比,踏面磨耗的平均绝对百分比误差分别为1.34%、1.42%,轮缘磨耗的平均绝对百分比误差分别为0.18%、0.19%,验证了本文所提模型具有良好的泛化性,为地铁轮对智能化管理提供理论支持,延长车轮使用寿命。