Results of in-situ vibration measurement carried out at Tianjin West Elevated Railway Station which has the trains running on the station structure were reported. The main excitation source is the train passing throug...Results of in-situ vibration measurement carried out at Tianjin West Elevated Railway Station which has the trains running on the station structure were reported. The main excitation source is the train passing through the station. Vibration measurements were recorded in the vertical direction of the supporting track beam, the platform and the steel truss beam of the waiting hall, as well as in the vertical, longitudinal and transverse directions of the roof arch base of the station. Acceleration time responses were obtained. The maximum value, vibration level and one-third octave band RMS spectra of the measured accelerations were studied. The propagation of vibration in different structural floors was discussed. The influence of train speed, distance to the vibration source and the type of train on the structural vibration were analyzed. Results show that the vibration level increases with the train speed, while it attenuates with the distance to the track. Furthermore, the vibration responses of different structural floors were compared, and it is noted that the vertical vibration of the bottom slab of the platform is most severe and the transverse vibration of the roof arch base is the smallest. The results provide reference on the vibration characteristics and vibration energy distribution of this type of "Train on building frame" system used as an elevated railway station.展开更多
Train-induced vibration exhibits a potential dynamic impact on historic buildings and especially on those with high historical and cultural value.Under the long-term reciprocating load of train vibrations,structural f...Train-induced vibration exhibits a potential dynamic impact on historic buildings and especially on those with high historical and cultural value.Under the long-term reciprocating load of train vibrations,structural fatigue damage can occur,and thus,a significant problem involves effectively evaluating and mitigating vibration impact on historic buildings while developing a rail transit system.In the present study,train-induced vibration impact and dynamic behavior of Probhutaratna pagoda in the suburb of Beijing,which has a history of approximately 1000 years,was investigated.To examine the dynamic behavior of the Probhutaratna pagoda and determine the weakest position in its architectural damage under train loads,its dynamic characteristics were measured.The free vibration modes were identified based on the dynamic measurement results.Subsequently,a finite element(FE)model of the Probhutaratna pagoda was constructed and the models and train-induced structural responses were compared with measured results.Finally,the structural dynamic responses to moving train loads were analyzed in detail.The results indicate the following conclusions.(1)The dominant frequency of the ambient vibration is below 4 Hz,and the dominant frequency of the train-induced vibration is between 8 and 16 Hz.(2)The first,second,and third order natural frequencies are 1,3.25,and 6 Hz,respectively,in the west-east direction,and are 1,3.25,and 6.25 Hz,respectively,in the north-south direction.(3)The two weakest locations(A and B)of the Probhutaratna pagoda are observed at the spire bottom and west gate of the first floor.At location A,the maximum principal stress reached 243.6 N/m^2 and the corresponding maximum tensile strain reached 3.74×10^-7.展开更多
The current research of rail corrugation mainly focuses on the mechanisms of its formation and development. Compared with the root causes and development mechanisms, the wheel-rail impacts, the fatigue failure of vehi...The current research of rail corrugation mainly focuses on the mechanisms of its formation and development. Compared with the root causes and development mechanisms, the wheel-rail impacts, the fatigue failure of vehicle-track parts, and the loss of ride comfort due to rail corrugation should also be taken into account. However, the influences of rail corrugation on vehicle and track vibration, and failure of vehicle and track structural parts are barely discussed in the literature. This paper presents an experimental and numerical investigation of the structural vibration of metro bogies caused by rail corrugation. Extensive experiments are conducted to investigate the effects of short-pitch rail corrugation on the vibration accelerations of metro bogies. A dynamic model of a metro vehicle coupled with a concrete track is established to study the influence of rail corrugation on the structural vibration of metro bogies. The field test results indicate that the short-pitch rail corrugation generates strong vibrations on the axle-boxes and the bogie frames, therefore, accelerates the fatigue failure of the bogie components. The numerical results show that short-pitch rail corrugation may largely reduce the fatigue life of the coil spring, and improving the damping value of the primary vertical dampers is likely to reduce the strong vibration induced by short-pitch rail corrugation. This research systematically studies the effect of rail corrugation on the vibration of metro bogies and proposes some remedies for mitigating strong vibrations of metro bogies and reducing the incidence of failure in primary coil springs, which would be helpful in developing new metro bogies and track maintenance procedures.展开更多
This paper presents a study of the characteristics of a railway vibration at three key sections containing different track structures in a metro depot.The results show that the vertical and horizontal vibration accele...This paper presents a study of the characteristics of a railway vibration at three key sections containing different track structures in a metro depot.The results show that the vertical and horizontal vibration acceleration levels are proportional to train speed.The Z-weighted vertical acceleration levels obtained showed that the vibration source strengths at the ballast foot of the testing line and the throat area were very close.The vibration attenuation at the repair line was larger than that of the testing line.In the throat area,the peak frequency of vibration obtained at the ballast foot(2.5 m)could be shifted to a lower frequency band by using polyurethane sleepers instead of standard concrete sleepers.Polyurethane sleepers can help to reduce vertical vibration in a frequency band of 0-10 Hz.The vibration levels would satisfy the limits given in the ISO2631-2-2003(2013)for any location more than 5 m away from the source at the testing line and 2.5 m away from the source at the repair line and throat area.展开更多
To investigate the vibration characteristics of a railway subgrade in different seasons, three field experiments were carried out in the seasonally frozen Daqing area of China during spring, smnmer, and winter. The vi...To investigate the vibration characteristics of a railway subgrade in different seasons, three field experiments were carried out in the seasonally frozen Daqing area of China during spring, smnmer, and winter. The vibration characteristics and attenuation rates of the subgrade induced by passing trains were investigated, and the influences of the season, train speed, train type, train load, and number of train compartments are described in this paper. The results show that: (1) near the rail track the vibration in the vertical direction was more significant than in the lateral and longitudinal directions, and as the distance from the railway track increased, the acceleration amplitudes and the attenuation rates all decreased in all three directions; (2) the acceleration amplitudes and at- tenuation rates decreased in the three different study seasons as the distance from the railway track increased, and the attenuation rates in the freezing period were the largest; and (3) the acceleration amplitude induced by a freight train was greater than that by a passenger train, and the subgrade vibration increased with increasing passenger train speeds when the number of train compart- ments was similar. These results have great significance for enhanced understanding of the characteristics of wain-induced vibra- tion embankment response in seasonally frozen regions, and provide essential field monitoring data on train-induced vibrations in order to improve the performance criteria of railroading in seasonally frozen regions.展开更多
钢轨波磨作为地铁线路中最为常见的轨道损伤问题之一,始终未得到根本性的解决。为研究不同轨道结构形式产生钢轨波磨后车辆内部振动噪声以及轨道结构振动的时频域特性,探究钢轨波磨对车辆和轨道的影响,对某地铁线路进行现场动静态测试,...钢轨波磨作为地铁线路中最为常见的轨道损伤问题之一,始终未得到根本性的解决。为研究不同轨道结构形式产生钢轨波磨后车辆内部振动噪声以及轨道结构振动的时频域特性,探究钢轨波磨对车辆和轨道的影响,对某地铁线路进行现场动静态测试,获取了钢轨波磨激励下车辆内部的振动和噪声响应以及轨道各部件的振动响应,使用时域指标统计、1/3倍频程谱分析等方法分析轨道振动响应特征和车内振动及噪声响应特征。结果表明:在小半径曲线地段,浮置板轨道产生了特征波长约为200 mm的钢轨波磨,整体道床轨道产生了特征波长约为60 mm的钢轨波磨;浮置板轨道的钢轨、道床板、隧道壁振动加速度有效值分别是整体道床的1.8、5.8倍及0.3倍;钢轨波磨对轨道振动的影响主要体现在中高频范围,在300~400 Hz附近,浮置板轨道振级从钢轨至隧道壁共衰减66 d B,而整体道床共衰减49 d B;列车通过测试区域时,转向架上方与客室中部垂、纵向振动加速度有效值基本一致,而客室中部横向振动加速度有效值约为转向架上方的2倍;车内转向架位置处的异常振动主要来源于钢轨波磨的激励,且短波长波磨所激励的车内振动及噪声更加剧烈。因此,地铁钢轨波磨产生后在轨道及车辆的振动噪声响应中均占主要成分,应及时对钢轨进行打磨处理,研究结果可为地铁工务维修提供理论指导。展开更多
为研究随机列车荷载作用下钢弹簧浮置板轨道(steel spring floating slab track,简称SSFST)上线运营后的减振效果,选取某地铁线路同一区间、同一曲线段内的普通无砟轨道及钢弹簧浮置板轨道典型测试断面,在同一天内开展了现场对比测试。...为研究随机列车荷载作用下钢弹簧浮置板轨道(steel spring floating slab track,简称SSFST)上线运营后的减振效果,选取某地铁线路同一区间、同一曲线段内的普通无砟轨道及钢弹簧浮置板轨道典型测试断面,在同一天内开展了现场对比测试。研究结果表明:钢弹簧浮置板轨道减振效果的线上评估结果与列车、轨道的实际运营状态直接相关;在不同列车的随机激励作用下,Z振级相对插入损失(ΔVL_(Z,max))相差超过10 dB,且部分测试样本无法满足特殊减振的设计需求;为获得保守的评价结果,应选择轮、轨平顺状态良好的运营区段开展对比测试;通过合理的养护维修,使运营列车及轨道保持良好的运行状态,是减振轨道区段满足振动控制需求的关键。展开更多
基金Project(50938008)supported by the Natural Science Foundation of Beijing,ChinaProject(2012JBM007)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(NCET-11-0571)supported by the Program for New Century Excellent Talents in University,China
文摘Results of in-situ vibration measurement carried out at Tianjin West Elevated Railway Station which has the trains running on the station structure were reported. The main excitation source is the train passing through the station. Vibration measurements were recorded in the vertical direction of the supporting track beam, the platform and the steel truss beam of the waiting hall, as well as in the vertical, longitudinal and transverse directions of the roof arch base of the station. Acceleration time responses were obtained. The maximum value, vibration level and one-third octave band RMS spectra of the measured accelerations were studied. The propagation of vibration in different structural floors was discussed. The influence of train speed, distance to the vibration source and the type of train on the structural vibration were analyzed. Results show that the vibration level increases with the train speed, while it attenuates with the distance to the track. Furthermore, the vibration responses of different structural floors were compared, and it is noted that the vertical vibration of the bottom slab of the platform is most severe and the transverse vibration of the roof arch base is the smallest. The results provide reference on the vibration characteristics and vibration energy distribution of this type of "Train on building frame" system used as an elevated railway station.
基金National Science Foundation of China under Grant No.51708450。
文摘Train-induced vibration exhibits a potential dynamic impact on historic buildings and especially on those with high historical and cultural value.Under the long-term reciprocating load of train vibrations,structural fatigue damage can occur,and thus,a significant problem involves effectively evaluating and mitigating vibration impact on historic buildings while developing a rail transit system.In the present study,train-induced vibration impact and dynamic behavior of Probhutaratna pagoda in the suburb of Beijing,which has a history of approximately 1000 years,was investigated.To examine the dynamic behavior of the Probhutaratna pagoda and determine the weakest position in its architectural damage under train loads,its dynamic characteristics were measured.The free vibration modes were identified based on the dynamic measurement results.Subsequently,a finite element(FE)model of the Probhutaratna pagoda was constructed and the models and train-induced structural responses were compared with measured results.Finally,the structural dynamic responses to moving train loads were analyzed in detail.The results indicate the following conclusions.(1)The dominant frequency of the ambient vibration is below 4 Hz,and the dominant frequency of the train-induced vibration is between 8 and 16 Hz.(2)The first,second,and third order natural frequencies are 1,3.25,and 6 Hz,respectively,in the west-east direction,and are 1,3.25,and 6.25 Hz,respectively,in the north-south direction.(3)The two weakest locations(A and B)of the Probhutaratna pagoda are observed at the spire bottom and west gate of the first floor.At location A,the maximum principal stress reached 243.6 N/m^2 and the corresponding maximum tensile strain reached 3.74×10^-7.
基金Supported by National Natural Science Foundation of China(Grant Nos.U1361117,51305360)PhD Programs Foundation of Ministry of Education of China(Grant No.20130184110005)+1 种基金Cultivation Program for the Excellent Doctoral Dissertation of Southwest Jiaotong UniversityGuangzhou Metro Corporation Program of China
文摘The current research of rail corrugation mainly focuses on the mechanisms of its formation and development. Compared with the root causes and development mechanisms, the wheel-rail impacts, the fatigue failure of vehicle-track parts, and the loss of ride comfort due to rail corrugation should also be taken into account. However, the influences of rail corrugation on vehicle and track vibration, and failure of vehicle and track structural parts are barely discussed in the literature. This paper presents an experimental and numerical investigation of the structural vibration of metro bogies caused by rail corrugation. Extensive experiments are conducted to investigate the effects of short-pitch rail corrugation on the vibration accelerations of metro bogies. A dynamic model of a metro vehicle coupled with a concrete track is established to study the influence of rail corrugation on the structural vibration of metro bogies. The field test results indicate that the short-pitch rail corrugation generates strong vibrations on the axle-boxes and the bogie frames, therefore, accelerates the fatigue failure of the bogie components. The numerical results show that short-pitch rail corrugation may largely reduce the fatigue life of the coil spring, and improving the damping value of the primary vertical dampers is likely to reduce the strong vibration induced by short-pitch rail corrugation. This research systematically studies the effect of rail corrugation on the vibration of metro bogies and proposes some remedies for mitigating strong vibrations of metro bogies and reducing the incidence of failure in primary coil springs, which would be helpful in developing new metro bogies and track maintenance procedures.
基金National Natural Science Foundation of China under Grant Nos.52068029,51878277 and 52178423the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province Youth under Grant No.20194BCJ22008the Key Research and Development Program of Jiangxi Province under Grant No.20192BBE50008。
文摘This paper presents a study of the characteristics of a railway vibration at three key sections containing different track structures in a metro depot.The results show that the vertical and horizontal vibration acceleration levels are proportional to train speed.The Z-weighted vertical acceleration levels obtained showed that the vibration source strengths at the ballast foot of the testing line and the throat area were very close.The vibration attenuation at the repair line was larger than that of the testing line.In the throat area,the peak frequency of vibration obtained at the ballast foot(2.5 m)could be shifted to a lower frequency band by using polyurethane sleepers instead of standard concrete sleepers.Polyurethane sleepers can help to reduce vertical vibration in a frequency band of 0-10 Hz.The vibration levels would satisfy the limits given in the ISO2631-2-2003(2013)for any location more than 5 m away from the source at the testing line and 2.5 m away from the source at the repair line and throat area.
基金supported by the 973 Program of China (Grant No. 2012CB026104)the National Natural Science Foundation of China (Grant Nos. 51174261 and 51078111)+1 种基金the Open Research Fund Program of the State Key Laboratory of Permafrost Engineering of China (Grant No. SKLFSE201007)the Ministry of Railways Science and Technology Research and Development Program (Grant No. 2009G010-E)
文摘To investigate the vibration characteristics of a railway subgrade in different seasons, three field experiments were carried out in the seasonally frozen Daqing area of China during spring, smnmer, and winter. The vibration characteristics and attenuation rates of the subgrade induced by passing trains were investigated, and the influences of the season, train speed, train type, train load, and number of train compartments are described in this paper. The results show that: (1) near the rail track the vibration in the vertical direction was more significant than in the lateral and longitudinal directions, and as the distance from the railway track increased, the acceleration amplitudes and the attenuation rates all decreased in all three directions; (2) the acceleration amplitudes and at- tenuation rates decreased in the three different study seasons as the distance from the railway track increased, and the attenuation rates in the freezing period were the largest; and (3) the acceleration amplitude induced by a freight train was greater than that by a passenger train, and the subgrade vibration increased with increasing passenger train speeds when the number of train compart- ments was similar. These results have great significance for enhanced understanding of the characteristics of wain-induced vibra- tion embankment response in seasonally frozen regions, and provide essential field monitoring data on train-induced vibrations in order to improve the performance criteria of railroading in seasonally frozen regions.
文摘钢轨波磨作为地铁线路中最为常见的轨道损伤问题之一,始终未得到根本性的解决。为研究不同轨道结构形式产生钢轨波磨后车辆内部振动噪声以及轨道结构振动的时频域特性,探究钢轨波磨对车辆和轨道的影响,对某地铁线路进行现场动静态测试,获取了钢轨波磨激励下车辆内部的振动和噪声响应以及轨道各部件的振动响应,使用时域指标统计、1/3倍频程谱分析等方法分析轨道振动响应特征和车内振动及噪声响应特征。结果表明:在小半径曲线地段,浮置板轨道产生了特征波长约为200 mm的钢轨波磨,整体道床轨道产生了特征波长约为60 mm的钢轨波磨;浮置板轨道的钢轨、道床板、隧道壁振动加速度有效值分别是整体道床的1.8、5.8倍及0.3倍;钢轨波磨对轨道振动的影响主要体现在中高频范围,在300~400 Hz附近,浮置板轨道振级从钢轨至隧道壁共衰减66 d B,而整体道床共衰减49 d B;列车通过测试区域时,转向架上方与客室中部垂、纵向振动加速度有效值基本一致,而客室中部横向振动加速度有效值约为转向架上方的2倍;车内转向架位置处的异常振动主要来源于钢轨波磨的激励,且短波长波磨所激励的车内振动及噪声更加剧烈。因此,地铁钢轨波磨产生后在轨道及车辆的振动噪声响应中均占主要成分,应及时对钢轨进行打磨处理,研究结果可为地铁工务维修提供理论指导。