BACKGROUND Intervertebral disc degeneration(IDD)is a main contributor to low back pain.Oxidative stress,which is highly associated with the progression of IDD,increases senescence of nucleus pulposus-derived mesenchym...BACKGROUND Intervertebral disc degeneration(IDD)is a main contributor to low back pain.Oxidative stress,which is highly associated with the progression of IDD,increases senescence of nucleus pulposus-derived mesenchymal stem cells(NPMSCs)and weakens the differentiation ability of NPMSCs in degenerated intervertebral discs(IVDs).Quercetin(Que)has been demonstrated to reduce oxidative stress in diverse degenerative diseases.AIM To investigate the role of Que in oxidative stress-induced NPMSC damage and to elucidate the underlying mechanism.METHODS In vitro,NPMSCs were isolated from rat tails.Senescence-associatedβ-galactosidase(SA-β-Gal)staining,cell cycle,reactive oxygen species(ROS),realtime quantitative polymerase chain reaction(RT-qPCR),immunofluorescence,and western blot analyses were used to evaluated the protective effects of Que.Meanwhile the relationship between miR-34a-5p and Sirtuins 1(SIRT1)was evaluated by dual-luciferase reporter assay.To explore whether Que modulates tert-butyl hydroperoxide(TBHP)-induced senescence of NPMSCs via the miR-34a-5p/SIRT1 pathway,we used adenovirus vectors to overexpress and downregulate the expression of miR-34a-5p and used SIRT1 siRNA to knockdown SIRT1 expression.In vivo,a puncture-induced rat IDD model was constructed,and X rays and histological analysis were used to assess whether Que could alleviate IDD in vivo.RESULTS We found that TBHP can cause NPMSCs senescence changes,such as reduced cell proliferation ability,increased SA-β-Gal activity,cell cycle arrest,the accumulation of ROS,and increased expression of senescence-related proteins.While abovementioned senescence indicators were significantly alleviated by Que treatment.Que decreased the expression levels of senescence-related proteins(p16,p21,and p53)and senescence-associated secreted phenotype(SASP),including IL-1β,IL-6,and MMP-13,and it increased the expression of SIRT1.In addition,the protective effects of Que on cell senescence were partially reversed by miR-34a-5p overexpression and SIRT1 knockdown.In vivo,X-ray,and histological analyses indicated that Que alleviated IDD in a punctureinduced rat model.CONCLUSION In summary,the present study provides evidence that Que reduces oxidative stress-induced senescence of NPMSCs via the miR-34a/SIRT1 signaling pathway,suggesting that Que may be a potential agent for the treatment of IDD.展开更多
Objective:To investigate the effect of exosomes secreted by decidual macrophages on trophoblast cells and their molecular mechanism.Methods:The decidual tissues of patients with preeclampsia(PE)and normal-term pregnan...Objective:To investigate the effect of exosomes secreted by decidual macrophages on trophoblast cells and their molecular mechanism.Methods:The decidual tissues of patients with preeclampsia(PE)and normal-term pregnant women were collected.Macrophages were obtained by the density gradient method and then flow cell sorting,then the exosomes were extracted.The structure of the exosomes was observed by transmission electron microscope.The expression of CD63,a marker protein of the exocrine body,was detected by western blot,and the exosomes were identified.CCK-8 was used to detect the effect of exosomes on trophoblast cell viability.Transwell migration experiment was used to detect the influence on migration ability.The expression of miR-146a-5p in exosomes was detected by qPCR.The effect of exosomes on the expression of HIF1αprotein in trophoblasts was detected by western blot and detection of the binding site between miR-146a-5p and HIF1αby double luciferase reporter gene was conducted.Results:The exosomes of macrophages present a"cake"structure with a middle depression about 30-130 nm in diameter,and CD63 is highly expressed,which conforms to the characteristics of exosomes.Compared with the normal group,the exosomes of decidual macrophages in the PE group inhibited the activity and migration of trophoblast cells(P<0.001).The expression of miR-146a-5p in the exosomes of decidual macrophages in the PE decreased significantly,and after exosomes of PE decidual macrophages treating trophoblast cells,the protein expression of HIF1αin trophoblast cells was significantly increased.There are targeted binding sites between miR-146a-5p and HIF1α.Conclusion:PE decidual macrophage exosomes can inhibit the viability and migration of trophoblast cells,which may be related to the decreased expression of miR-146a-5p in exosomes,thus promoting HIF1αprotein expression of trophoblast cells.展开更多
基金Supported by the National Natural Science Foundation of China,No.82172462,No.81972136the Traditional Chinese Medicine Science and Technology Development Plan Project of Jiangsu Province,No.YB2020085Cross Cooperation Project of Northern Jiangsu People’s Hospital,No.SBJC21014.
文摘BACKGROUND Intervertebral disc degeneration(IDD)is a main contributor to low back pain.Oxidative stress,which is highly associated with the progression of IDD,increases senescence of nucleus pulposus-derived mesenchymal stem cells(NPMSCs)and weakens the differentiation ability of NPMSCs in degenerated intervertebral discs(IVDs).Quercetin(Que)has been demonstrated to reduce oxidative stress in diverse degenerative diseases.AIM To investigate the role of Que in oxidative stress-induced NPMSC damage and to elucidate the underlying mechanism.METHODS In vitro,NPMSCs were isolated from rat tails.Senescence-associatedβ-galactosidase(SA-β-Gal)staining,cell cycle,reactive oxygen species(ROS),realtime quantitative polymerase chain reaction(RT-qPCR),immunofluorescence,and western blot analyses were used to evaluated the protective effects of Que.Meanwhile the relationship between miR-34a-5p and Sirtuins 1(SIRT1)was evaluated by dual-luciferase reporter assay.To explore whether Que modulates tert-butyl hydroperoxide(TBHP)-induced senescence of NPMSCs via the miR-34a-5p/SIRT1 pathway,we used adenovirus vectors to overexpress and downregulate the expression of miR-34a-5p and used SIRT1 siRNA to knockdown SIRT1 expression.In vivo,a puncture-induced rat IDD model was constructed,and X rays and histological analysis were used to assess whether Que could alleviate IDD in vivo.RESULTS We found that TBHP can cause NPMSCs senescence changes,such as reduced cell proliferation ability,increased SA-β-Gal activity,cell cycle arrest,the accumulation of ROS,and increased expression of senescence-related proteins.While abovementioned senescence indicators were significantly alleviated by Que treatment.Que decreased the expression levels of senescence-related proteins(p16,p21,and p53)and senescence-associated secreted phenotype(SASP),including IL-1β,IL-6,and MMP-13,and it increased the expression of SIRT1.In addition,the protective effects of Que on cell senescence were partially reversed by miR-34a-5p overexpression and SIRT1 knockdown.In vivo,X-ray,and histological analyses indicated that Que alleviated IDD in a punctureinduced rat model.CONCLUSION In summary,the present study provides evidence that Que reduces oxidative stress-induced senescence of NPMSCs via the miR-34a/SIRT1 signaling pathway,suggesting that Que may be a potential agent for the treatment of IDD.
基金Hainan Provincial Natural Science Foundation Project(821MS128,822MS164)Hainan Provincial People's Hospital National Natural Science Foundation Cultivation Project(530)(2021MSXM04)。
文摘Objective:To investigate the effect of exosomes secreted by decidual macrophages on trophoblast cells and their molecular mechanism.Methods:The decidual tissues of patients with preeclampsia(PE)and normal-term pregnant women were collected.Macrophages were obtained by the density gradient method and then flow cell sorting,then the exosomes were extracted.The structure of the exosomes was observed by transmission electron microscope.The expression of CD63,a marker protein of the exocrine body,was detected by western blot,and the exosomes were identified.CCK-8 was used to detect the effect of exosomes on trophoblast cell viability.Transwell migration experiment was used to detect the influence on migration ability.The expression of miR-146a-5p in exosomes was detected by qPCR.The effect of exosomes on the expression of HIF1αprotein in trophoblasts was detected by western blot and detection of the binding site between miR-146a-5p and HIF1αby double luciferase reporter gene was conducted.Results:The exosomes of macrophages present a"cake"structure with a middle depression about 30-130 nm in diameter,and CD63 is highly expressed,which conforms to the characteristics of exosomes.Compared with the normal group,the exosomes of decidual macrophages in the PE group inhibited the activity and migration of trophoblast cells(P<0.001).The expression of miR-146a-5p in the exosomes of decidual macrophages in the PE decreased significantly,and after exosomes of PE decidual macrophages treating trophoblast cells,the protein expression of HIF1αin trophoblast cells was significantly increased.There are targeted binding sites between miR-146a-5p and HIF1α.Conclusion:PE decidual macrophage exosomes can inhibit the viability and migration of trophoblast cells,which may be related to the decreased expression of miR-146a-5p in exosomes,thus promoting HIF1αprotein expression of trophoblast cells.