目的利用microRNA(miRNA)芯片筛选肾阳虚证差异表达的miRNAs。方法选择肾阳虚证患者14例作为肾阳虚证组,健康对照者14例作为正常对照组,分别抽取2组受检者外周静脉血5 m L,提取总RNA分离miRNA,应用miRCURYTM LNA Array(v.18.0)(Exiqon)...目的利用microRNA(miRNA)芯片筛选肾阳虚证差异表达的miRNAs。方法选择肾阳虚证患者14例作为肾阳虚证组,健康对照者14例作为正常对照组,分别抽取2组受检者外周静脉血5 m L,提取总RNA分离miRNA,应用miRCURYTM LNA Array(v.18.0)(Exiqon)芯片技术筛选2组间差异表达的miRNAs并进行分析,应用Gene ontology(GO)分析差异miRNA生物功能。结果共筛选出48条有统计学意义的差异表达miRNAs,其中29条表达上调,19条表达下调,这些差异miRNAs主要参与了免疫、信号通路、蛋白翻译合成等调节。结论肾阳虚证患者和健康对照者存在差异表达的miRNAs。展开更多
以高耐热玉米品种郑单958、低耐热玉米品种先玉335为材料,以正常生长条件为对照,在花期进行高温胁迫,通过miRNA高通量测序筛选玉米花粉中的差异表达miRNA,然后预测其靶基因,并对靶基因的本体特征和代谢通路进行富集分析。结果表明,共筛...以高耐热玉米品种郑单958、低耐热玉米品种先玉335为材料,以正常生长条件为对照,在花期进行高温胁迫,通过miRNA高通量测序筛选玉米花粉中的差异表达miRNA,然后预测其靶基因,并对靶基因的本体特征和代谢通路进行富集分析。结果表明,共筛选到818个miRNA前体序列。在郑单958高温胁迫花粉与对照花粉对比组(HT958 vs CK958)中共筛选到19个显著差异表达miRNA序列,其中15个miRNA序列上调表达,4个下调表达,3个miRNA序列达到极显著水平(P<0.01)。对这19个显著差异表达miRNA的靶基因进行预测,共获得了503个基因转录本,其富集较多的GO生物学过程条目分别为转录调控DNA-模板、微管生物学过程、磷酸化作用、RNA聚合酶Ⅱ正向调控转录过程、甲基化作用等,KEGG富集较显著的代谢通路分别是谷胱甘肽代谢、碳代谢、花生四烯酸代谢、糖酵解/糖异生、叶酸生物合成等。在先玉335高温胁迫花粉与对照花粉对比组(HT335 vs CK335)中共筛选到15个显著差异表达miRNA序列,其中7个miRNA序列上调表达,8个下调表达,1个miRNA序列达到了极显著水平(P<0.01)。对这15个显著差异表达miRNA的靶基因进行预测,共获得了454个基因转录本,其富集较多的GO生物学过程条目分别为转录调控DNA-模板、磷酸化作用、蛋白质磷酸化作用、蛋白质水解、DNA修复等,富集较显著的KEGG代谢通路分别是其他多糖降解、亚油酸代谢、代谢通路、硫胺素代谢、内质网内蛋白质加工过程等。在郑单958高温胁迫花粉与先玉335高温胁迫花粉对比组(HT985 vs HT335)中共筛选到85个显著差异表达miRNA序列,其中35个miRNA序列为上调表达,50个为下调表达,24个miRNA序列达到了极显著水平(P<0.01)。对这85个显著差异表达miRNA的靶基因进行预测,共获得了2 286个基因转录本,其富集较多的GO生物学过程条目分别为转录调控DNA-模板、磷酸化作用、蛋白质磷酸化、蛋白质水解、跨膜转运等,富集较显著的代谢通路分别是鞘脂类代谢、淀粉和蔗糖代谢、其他多糖降解、代谢通路、半胱氨酸及甲硫氨酸代谢等。在HT958 vs CK958与HT335 vs CK335对比组中共筛选到94个显著差异表达miRNA序列,其中(预测全新)PC-3p-10069_1143、(预测全新)PC-3p-18335_646、(玉米)zma-miR164f-5p等28个miRNA序列达到了极显著水平(P<0.01)。对这94个显著差异表达miRNA的靶基因进行预测,共获得了4 569个基因转录本,其富集较多的GO生物学过程条目分别为转录调控DNA-模板、磷酸化作用、蛋白质磷酸化、蛋白质转运、蛋白质水解等,其富集较显著的KEGG代谢通路分别是内质网内蛋白质加工过程、真核生物核糖体生物合成、剪接体、鞘脂类代谢、内吞作用等。展开更多
[Objective] The research aimed to discuss the differential expression quantity of miRNA-181b in mature(18-month-old) and immature(one-month-old) cattle's anterior pituitary and its regulation function.[Method] cD...[Objective] The research aimed to discuss the differential expression quantity of miRNA-181b in mature(18-month-old) and immature(one-month-old) cattle's anterior pituitary and its regulation function.[Method] cDNA library of miRNA in mature(18-month-old) and immature(one-month-old) cattle's anterior pituitary were established.After Solexa high-throughput sequencing of miRNA in the cDNA library,miRNA in anterior pituitary of bulls was identified.miRNA-181b with differential expression were selected from the sequencing results.By real-time quantitative RT-PCR,the expression laws of miRNA-181b in the anterior pituitary of Yanbian Cattle in different growth period was validated.And the target genes of miRNA-181b were forecast by using TargetScanS prediction software.[Result] The expression quantity of miRNA-181b had great difference in cattle's anterior pituitary different growth periods.The expression quantity of miRNA-181b in anterior pituitary of one-month-old cattle was 4.05 times as that in 18-month-old cattle.The binding of miRNA-181b with 838-844 bases in 3' untranslated region of FSHβ gene was specific and the binding base sites were UGAAUGUA.[Conclusion] This research provided the theoretical basis for the transcription regulation research of FSHβ.展开更多
[Objective] The aim of this study was to explore the expression differences of miRNA response to low energy N+ beam radiation in rice.[Method]Three groups of ion beam irradiation rice seeds and untreated rice seeds w...[Objective] The aim of this study was to explore the expression differences of miRNA response to low energy N+ beam radiation in rice.[Method]Three groups of ion beam irradiation rice seeds and untreated rice seeds were selected respectively,and then the total RNA of seedlings after 96 h of germination was extracted at 30 ℃.Agilent gene chip was used to screen the differentially expressed genes of two groups of rice seedlings.The chip contained 510 miRNA probes;and about two times of expression differences between two samples were considered as the threshold range.[Result]14 miRNA molecules showed significant expression differences between the irradiated group and the control group,and all of them were decreased.[Conclusion]The miRNAs showed expression differences between irradiated group and the control group,which might regulate the expression of certain genes to respond to ion irradiation,thus producing physiological,biochemical and phenotypic differences.展开更多
文摘以高耐热玉米品种郑单958、低耐热玉米品种先玉335为材料,以正常生长条件为对照,在花期进行高温胁迫,通过miRNA高通量测序筛选玉米花粉中的差异表达miRNA,然后预测其靶基因,并对靶基因的本体特征和代谢通路进行富集分析。结果表明,共筛选到818个miRNA前体序列。在郑单958高温胁迫花粉与对照花粉对比组(HT958 vs CK958)中共筛选到19个显著差异表达miRNA序列,其中15个miRNA序列上调表达,4个下调表达,3个miRNA序列达到极显著水平(P<0.01)。对这19个显著差异表达miRNA的靶基因进行预测,共获得了503个基因转录本,其富集较多的GO生物学过程条目分别为转录调控DNA-模板、微管生物学过程、磷酸化作用、RNA聚合酶Ⅱ正向调控转录过程、甲基化作用等,KEGG富集较显著的代谢通路分别是谷胱甘肽代谢、碳代谢、花生四烯酸代谢、糖酵解/糖异生、叶酸生物合成等。在先玉335高温胁迫花粉与对照花粉对比组(HT335 vs CK335)中共筛选到15个显著差异表达miRNA序列,其中7个miRNA序列上调表达,8个下调表达,1个miRNA序列达到了极显著水平(P<0.01)。对这15个显著差异表达miRNA的靶基因进行预测,共获得了454个基因转录本,其富集较多的GO生物学过程条目分别为转录调控DNA-模板、磷酸化作用、蛋白质磷酸化作用、蛋白质水解、DNA修复等,富集较显著的KEGG代谢通路分别是其他多糖降解、亚油酸代谢、代谢通路、硫胺素代谢、内质网内蛋白质加工过程等。在郑单958高温胁迫花粉与先玉335高温胁迫花粉对比组(HT985 vs HT335)中共筛选到85个显著差异表达miRNA序列,其中35个miRNA序列为上调表达,50个为下调表达,24个miRNA序列达到了极显著水平(P<0.01)。对这85个显著差异表达miRNA的靶基因进行预测,共获得了2 286个基因转录本,其富集较多的GO生物学过程条目分别为转录调控DNA-模板、磷酸化作用、蛋白质磷酸化、蛋白质水解、跨膜转运等,富集较显著的代谢通路分别是鞘脂类代谢、淀粉和蔗糖代谢、其他多糖降解、代谢通路、半胱氨酸及甲硫氨酸代谢等。在HT958 vs CK958与HT335 vs CK335对比组中共筛选到94个显著差异表达miRNA序列,其中(预测全新)PC-3p-10069_1143、(预测全新)PC-3p-18335_646、(玉米)zma-miR164f-5p等28个miRNA序列达到了极显著水平(P<0.01)。对这94个显著差异表达miRNA的靶基因进行预测,共获得了4 569个基因转录本,其富集较多的GO生物学过程条目分别为转录调控DNA-模板、磷酸化作用、蛋白质磷酸化、蛋白质转运、蛋白质水解等,其富集较显著的KEGG代谢通路分别是内质网内蛋白质加工过程、真核生物核糖体生物合成、剪接体、鞘脂类代谢、内吞作用等。
基金Supported by National Natural Science Foundation of China(30972100)Jilin Science and Technology Development Pro-gram (201101015)~~
文摘[Objective] The research aimed to discuss the differential expression quantity of miRNA-181b in mature(18-month-old) and immature(one-month-old) cattle's anterior pituitary and its regulation function.[Method] cDNA library of miRNA in mature(18-month-old) and immature(one-month-old) cattle's anterior pituitary were established.After Solexa high-throughput sequencing of miRNA in the cDNA library,miRNA in anterior pituitary of bulls was identified.miRNA-181b with differential expression were selected from the sequencing results.By real-time quantitative RT-PCR,the expression laws of miRNA-181b in the anterior pituitary of Yanbian Cattle in different growth period was validated.And the target genes of miRNA-181b were forecast by using TargetScanS prediction software.[Result] The expression quantity of miRNA-181b had great difference in cattle's anterior pituitary different growth periods.The expression quantity of miRNA-181b in anterior pituitary of one-month-old cattle was 4.05 times as that in 18-month-old cattle.The binding of miRNA-181b with 838-844 bases in 3' untranslated region of FSHβ gene was specific and the binding base sites were UGAAUGUA.[Conclusion] This research provided the theoretical basis for the transcription regulation research of FSHβ.
基金Supported by National Natural Science Foundation of China(308200204)Natural Science Research Program in Education Department of Henan Province(2009B180019)~~
文摘[Objective] The aim of this study was to explore the expression differences of miRNA response to low energy N+ beam radiation in rice.[Method]Three groups of ion beam irradiation rice seeds and untreated rice seeds were selected respectively,and then the total RNA of seedlings after 96 h of germination was extracted at 30 ℃.Agilent gene chip was used to screen the differentially expressed genes of two groups of rice seedlings.The chip contained 510 miRNA probes;and about two times of expression differences between two samples were considered as the threshold range.[Result]14 miRNA molecules showed significant expression differences between the irradiated group and the control group,and all of them were decreased.[Conclusion]The miRNAs showed expression differences between irradiated group and the control group,which might regulate the expression of certain genes to respond to ion irradiation,thus producing physiological,biochemical and phenotypic differences.