MicroRNAs (miRNAs) are -21-nucleotide noncoding RNAs that play critical roles in regulating plant growth and development through directing the degradation of target mRNAs. Axillary meristem activity, and hence shoot...MicroRNAs (miRNAs) are -21-nucleotide noncoding RNAs that play critical roles in regulating plant growth and development through directing the degradation of target mRNAs. Axillary meristem activity, and hence shoot branching, is influenced by a complicated network that involves phytohormones such as auxin, cytokinin, and strigolactone. GAI, RGA, and SCR (GRAS) family members take part in a variety of developmental processes, including axillary bud growth. Here, we show that the Arabidopsis thaliana microRNA171c (miR171c) acts to negatively regulate shoot branching through targeting GRAS gene family members SCARECROW-LIKE6-Ⅱ (SCL6-Ⅱ), SCL6-Ⅲ, and SCL6-Ⅳ for cleavage. Transgenic plants overexpressing MIR171c (35Spro-MIR171c) and sd6-Ⅱ scl6-Ⅲ scl6-Ⅳ triple mutant plants exhibit a similar reduced shoot branching phenotype. Expression of any one of the miR171c-resistant versions of SCL6-Ⅱ, SCL6-Ⅲ, and SCL6-Ⅳ in 35Spro- MIR171c plants rescues the reduced shoot branching phenotype. Scl6-Ⅱ scl6-Ⅲ scl6-Ⅳ mutant plants exhibit pleiotropic phenotypes such as increased chlorophyll accumulation, decreased primary root elongation, and abnormal leaf and flower patterning. SCL6-Ⅱ, SCL6-Ⅲ, and SCL6-Ⅳ are located to the nucleus, and show transcriptional activation activity. Our results suggest that miR171c-targeted SCL6-Ⅱ, SCL6-Ⅲ, and SCL6-Ⅳ play an important role in the regulation of shoot branch production.展开更多
文摘MicroRNAs (miRNAs) are -21-nucleotide noncoding RNAs that play critical roles in regulating plant growth and development through directing the degradation of target mRNAs. Axillary meristem activity, and hence shoot branching, is influenced by a complicated network that involves phytohormones such as auxin, cytokinin, and strigolactone. GAI, RGA, and SCR (GRAS) family members take part in a variety of developmental processes, including axillary bud growth. Here, we show that the Arabidopsis thaliana microRNA171c (miR171c) acts to negatively regulate shoot branching through targeting GRAS gene family members SCARECROW-LIKE6-Ⅱ (SCL6-Ⅱ), SCL6-Ⅲ, and SCL6-Ⅳ for cleavage. Transgenic plants overexpressing MIR171c (35Spro-MIR171c) and sd6-Ⅱ scl6-Ⅲ scl6-Ⅳ triple mutant plants exhibit a similar reduced shoot branching phenotype. Expression of any one of the miR171c-resistant versions of SCL6-Ⅱ, SCL6-Ⅲ, and SCL6-Ⅳ in 35Spro- MIR171c plants rescues the reduced shoot branching phenotype. Scl6-Ⅱ scl6-Ⅲ scl6-Ⅳ mutant plants exhibit pleiotropic phenotypes such as increased chlorophyll accumulation, decreased primary root elongation, and abnormal leaf and flower patterning. SCL6-Ⅱ, SCL6-Ⅲ, and SCL6-Ⅳ are located to the nucleus, and show transcriptional activation activity. Our results suggest that miR171c-targeted SCL6-Ⅱ, SCL6-Ⅲ, and SCL6-Ⅳ play an important role in the regulation of shoot branch production.