The paper investigates the second-order interactions of parameters in an alkali-activated mixture of paper production waste(PPW)and blast furnace slag(BFS)in Taguchi method.The PPW including lime mud(LM)and paper slud...The paper investigates the second-order interactions of parameters in an alkali-activated mixture of paper production waste(PPW)and blast furnace slag(BFS)in Taguchi method.The PPW including lime mud(LM)and paper sludge(PS).This paper provides the experimental models to assess the compressive and flexural strength of them at 7-day and 28-day.The results have shown that the second-order interactions between PPW and alkali-activated activator exists in each experimental model,and the significant interactions affect the selection of optimal compositions.Compared with the interactions between the PPW themselves,the interactions between PPW and alkali-activated parameters are the main significant factors affecting its physical properties.In each experimental model,the maximum compressive strength was 47.41 MPa in 7-day and 65.64 MPa in 28-day.Compared with the confirmatory experiments,the deviation of prediction calculated by experimental models was 3.08%and 0.56%,respectively.The maximum flexural strength was 5.74 MPa in 7-day and 5.96 MPa in 28-day;compared with the confirmatory experiments,the deviation of prediction calculated by experimental models was 5.40%and 0.17%.Considering the influence of circular materials,30%of PPW should be a suitable ratio to replace BFS as the raw material of alkali-activated slag(AAS).展开更多
This study investigated the potential of oleaginous yeast Rhodotorula glutinis utilizing pulp and paper wastewater effluents as cultivation media for the sustainable production of microbial lipids as biodiesel feedsto...This study investigated the potential of oleaginous yeast Rhodotorula glutinis utilizing pulp and paper wastewater effluents as cultivation media for the sustainable production of microbial lipids as biodiesel feedstock. R. glutinis is oleaginous yeast, which has the ability to produce significant quantities of intercellular lipids in the form of triacylglycerols. Yeast lipids are a promising potential feedstock for biodiesel production due to similar fatty acid composition to plant oils. The effect of various carbon sources on biomass production, lipid accumulation, substrate utilization, and fatty acid composition using R. glutinis in the pulp and paper wastewater media was studied. The pulp and paper wastewater was supplemented with glucose, xylose, and glycerol as carbon sources under nitrogen-limited conditions. The maximum lipid productions of 1.3 - 2.9 g•L–1, which corresponded to the intracellular lipid contents of 8% - 15% cell dry weight (CDW), were obtained under various carbon substrates. A kinetic study of the batch fermentation was performed in a 3 L aerobic batch fermenter to describe the cell growth, lipid accumulation, and substrate utilization process, and the kinetic parameter was estimated. The fatty acid profile of oleaginous yeast was rich in palmitic, oleic, and linoleic acids and comparable to vegetable oils. Thus, the results of this study indicated that pulp and paper wastewater could be used to produce lipids as biodiesel feedstock.展开更多
China’s paper production reached 79.8×10^(6) t in 2008 and ranked number one in the world.Because of its high consumption of water,energy and materials and its serious pollution,the present processes are not lik...China’s paper production reached 79.8×10^(6) t in 2008 and ranked number one in the world.Because of its high consumption of water,energy and materials and its serious pollution,the present processes are not likely to be sustainable.An alternative,the closed Water Loop-Papermaking Integration(WLPI)method,is put forward in this paper.The WLPI method can be realized in a recycled paper mill by adding technologies and using recycled water.Many industrial case studies have shown that a large quantity of water,energy and materials can be saved,and the quantity of waste sludge and wastewater discharge was minimized by using the WLPI method.The design of the water reuse system,control of calcium hardness,water recycling and minimal waste sludge are discussed.Anaerobic technology plays an important role in the WLPI method to lower cost,energy use and waste.In the brown paper and coated white board production,zeroeffluent discharge can be realized.Fresh water consumption is only 1-2m^(3)·t^(-1).For the paper mills with deinking and bleaching processes,about 10 m^(3)·t^(-1) of fresh water and a similar amount of effluent discharge are needed.Power saving using anaerobic technology is 70%when recycled water is used in comparison with the conventional activated sludge process.Waste sludge can be decreased to about 5%of the initial process due to reuse of the waste sludge and the lower bio-sludge production of the anaerobic process.展开更多
基金This work was supported by Ministry of education of Taiwan(Grant No.H108-AA09)for funding,CHP for materials provision,and NCKU C-Hub for space and instruments.
文摘The paper investigates the second-order interactions of parameters in an alkali-activated mixture of paper production waste(PPW)and blast furnace slag(BFS)in Taguchi method.The PPW including lime mud(LM)and paper sludge(PS).This paper provides the experimental models to assess the compressive and flexural strength of them at 7-day and 28-day.The results have shown that the second-order interactions between PPW and alkali-activated activator exists in each experimental model,and the significant interactions affect the selection of optimal compositions.Compared with the interactions between the PPW themselves,the interactions between PPW and alkali-activated parameters are the main significant factors affecting its physical properties.In each experimental model,the maximum compressive strength was 47.41 MPa in 7-day and 65.64 MPa in 28-day.Compared with the confirmatory experiments,the deviation of prediction calculated by experimental models was 3.08%and 0.56%,respectively.The maximum flexural strength was 5.74 MPa in 7-day and 5.96 MPa in 28-day;compared with the confirmatory experiments,the deviation of prediction calculated by experimental models was 5.40%and 0.17%.Considering the influence of circular materials,30%of PPW should be a suitable ratio to replace BFS as the raw material of alkali-activated slag(AAS).
文摘This study investigated the potential of oleaginous yeast Rhodotorula glutinis utilizing pulp and paper wastewater effluents as cultivation media for the sustainable production of microbial lipids as biodiesel feedstock. R. glutinis is oleaginous yeast, which has the ability to produce significant quantities of intercellular lipids in the form of triacylglycerols. Yeast lipids are a promising potential feedstock for biodiesel production due to similar fatty acid composition to plant oils. The effect of various carbon sources on biomass production, lipid accumulation, substrate utilization, and fatty acid composition using R. glutinis in the pulp and paper wastewater media was studied. The pulp and paper wastewater was supplemented with glucose, xylose, and glycerol as carbon sources under nitrogen-limited conditions. The maximum lipid productions of 1.3 - 2.9 g•L–1, which corresponded to the intracellular lipid contents of 8% - 15% cell dry weight (CDW), were obtained under various carbon substrates. A kinetic study of the batch fermentation was performed in a 3 L aerobic batch fermenter to describe the cell growth, lipid accumulation, and substrate utilization process, and the kinetic parameter was estimated. The fatty acid profile of oleaginous yeast was rich in palmitic, oleic, and linoleic acids and comparable to vegetable oils. Thus, the results of this study indicated that pulp and paper wastewater could be used to produce lipids as biodiesel feedstock.
基金This study was financially supported by the Megaprojects of Science Research for Water Environment Improvement of China(No.2009ZX07212-002-002)the Major Program for Science and Technology Development of Shanxi Province of China(No.2006kz08-G2).
文摘China’s paper production reached 79.8×10^(6) t in 2008 and ranked number one in the world.Because of its high consumption of water,energy and materials and its serious pollution,the present processes are not likely to be sustainable.An alternative,the closed Water Loop-Papermaking Integration(WLPI)method,is put forward in this paper.The WLPI method can be realized in a recycled paper mill by adding technologies and using recycled water.Many industrial case studies have shown that a large quantity of water,energy and materials can be saved,and the quantity of waste sludge and wastewater discharge was minimized by using the WLPI method.The design of the water reuse system,control of calcium hardness,water recycling and minimal waste sludge are discussed.Anaerobic technology plays an important role in the WLPI method to lower cost,energy use and waste.In the brown paper and coated white board production,zeroeffluent discharge can be realized.Fresh water consumption is only 1-2m^(3)·t^(-1).For the paper mills with deinking and bleaching processes,about 10 m^(3)·t^(-1) of fresh water and a similar amount of effluent discharge are needed.Power saving using anaerobic technology is 70%when recycled water is used in comparison with the conventional activated sludge process.Waste sludge can be decreased to about 5%of the initial process due to reuse of the waste sludge and the lower bio-sludge production of the anaerobic process.