The major objective of this research was to discuss the effects of loading rate on the flexural-tension properties and uniaxial compressive strength of micro-surfacing mixture using three-point bending test and uniaxi...The major objective of this research was to discuss the effects of loading rate on the flexural-tension properties and uniaxial compressive strength of micro-surfacing mixture using three-point bending test and uniaxial compressive test respectively. As a preventive maintenance surface treatment on asphalt pavement, micro-surfacing was formed on the basis of the ISSA recommendation of an optimum micro-surfacing design. Tests were conducted over a wide range of temperature to investigate the difference of properties from low loading rate to a relatively high loading rate. Three-point bending test was used to study the flexural strength, strain and modulus of micro-surfacing mixture, and uniaxial compressive test was carried out to obtain the relationship between strength and the loading rate as well as temperature. The experimental results showed that flexural strength at high loading rate was larger than that at low loading rate. The flexural strength difference between low and high loading rate enlarged when the temperature rose. The flexural strain at high loading rate increased compared with results of the low loading rate. Results of the flexural modulus revealed that micro-surfacing mixture exhibited better anti-cracking characteristic at low temperature when given a relatively low loading rate. Results of uniaxial compressive test revealed that the strength difference of micro-surfacing among different loading rates increased with the increase of temperature. The logarithm relationship between the strength and loading rate over a wide range of temperature was obtained to compare the experimental and predicted values, which resulting in a reasonable consistency.展开更多
The work presented here is a study on the measurement and prediction of the rutting resistance of previously rutted asphalt mixes rehabilitated with a layer of micro-surfacing manufactured with virgin and recycled agg...The work presented here is a study on the measurement and prediction of the rutting resistance of previously rutted asphalt mixes rehabilitated with a layer of micro-surfacing manufactured with virgin and recycled aggregates at different stages of aging. The experimental procedure consisted of rutting tests on hot mix asphalt slabs already degraded and repaired with virgin and recycled micro-surfacing. Then, the evolution of the behavior of micro-surfacing cast on the hot mix asphalt slabs is observed according to loading cycles of the pavement rutting tester MLPC. Before rutting tests, slabs are subjected to 24 hours at 50°C and aged for 2 days and 5 days at 85°C in the oven. The results showed rutting percentages of 6.3% for hot mix asphalt slabs aged for 2 days and 7.2% for 5 days. These hot mix slabs repaired with virgin micro-surfacing have rutting percentage of about 9.2 % for 2 days of aging and 6.5% for 5 days of aging. While, the HMA slabs repaired with recycled micro-surfacing have rutting percentage of about 8.1% for 2 days of aging and 5.9% for 5 days of aging. These results allowed the development of a prediction model based essentially on three predictor variables including cycle number, rutting state and percentage of water in the micro-surfacing material. The developed model shows a strong correlation between the predicted rutting values and the rutting values measured with the MLPC rut tester. Thermal aging in oven has a positive impact on the resistance to permanent deformation of new asphalt mixes and those rehabilitated with micro-surfacing. The parameters of rutting state and contribution water are significant in the rutting prediction model, while the cycle number remains a non-significant parameter in the model but determinant.展开更多
In the present work, osteoblast behavior on a hierarchical micro-/nano-structured titanium surface was investigated. A hi- erarchical hybrid micro-/nano-structured titanium surface topography was produced via Electrol...In the present work, osteoblast behavior on a hierarchical micro-/nano-structured titanium surface was investigated. A hi- erarchical hybrid micro-/nano-structured titanium surface topography was produced via Electrolytic Etching (EE). MG-63 cells were cultured on disks for 2 h to 7 days. The osteoblast response to the hierarchical hybrid micro-/nano-structured titanium surface was evaluated through the osteoblast cell morphology, attachment and proliferation. For comparison, MG-63 cells were also cultured on Sandblasted and Acid-etched (SEA) as well as Machined (M) surfaces respectively. The results show signifi- cant differences in the adhesion rates and proliferation levels of MG-63 cells on EE, SLA, and M surfaces. Both adhesion rate and proliferation level on EE surface are higher than those on SLA and M surfaces. Therefore, we may expect that, comparing with SLA and M surfaces, bone growth on EE surface could be accelerated and bone formation could be promoted at an early stage, which could be applied in the clinical practices for immediate and early-stage loadings.展开更多
The current research of micro-grinding mainly focuses on the optimal processing technology for different materials. However, the material removal mechanism in micro-grinding is the base of achieving high quality proce...The current research of micro-grinding mainly focuses on the optimal processing technology for different materials. However, the material removal mechanism in micro-grinding is the base of achieving high quality processing surface. Therefore, a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography is proposed in this paper. The differences of material removal mechanism between convention grinding process and micro-grinding process are analyzed. Topography characterization has been done on micro-grinding tools which are fabricated by electroplating. Models of grain density generation and grain interval are built, and new predicting model of micro-grinding surface roughness is developed. In order to verify the precision and application effect of the surface roughness prediction model proposed, a micro-grinding orthogonally experiment on soda-lime glass is designed and conducted. A series of micro-machining surfaces which are 78 nm to 0.98 ~tm roughness of brittle material is achieved. It is found that experimental roughness results and the predicting roughness data have an evident coincidence, and the component variable of describing the size effects in predicting model is calculated to be 1.5x 107 by reverse method based on the experimental results. The proposed model builds a set of distribution to consider grains distribution densities in different protrusion heights. Finally, the characterization of micro-grinding tools which are used in the experiment has been done based on the distribution set. It is concluded that there is a significant coincidence between surface prediction data from the proposed model and measurements from experiment results. Therefore, the effectiveness of the model is demonstrated. This paper proposes a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography, which would provide significant research theory and experimental reference of material removal mechanism in micro-grinding of soda-lime glass.展开更多
Surface texturing has been applied to improving the tribological performance of mechanical components for many years. Currently, the researches simulate the film pressure distribution of textured rough surfaces on the...Surface texturing has been applied to improving the tribological performance of mechanical components for many years. Currently, the researches simulate the film pressure distribution of textured rough surfaces on the basis of the average flow model, and however the influence of roughness on the film pressure distribution could not be precisely expressed. Therefore, in order to study the hydrodynamic lubrication of the rough textured surfaces, sinusoidal waves are employed to characterize untextured surfaces. A deterministic model for hydrodynamic lubrication of microdimple textured rough surfaces is developed to predict the distribution of hydrodynamic pressure. By supplementing with the JFO cavitation boundary, the load carrying capacity of the film produced by micro-dimples and roughness is obtained. And the geometric parameters of textured rough surface are optimized to obtain the maximum hydrodynamic lubrication by specifying an optimization goal of the load carrying capacity. The effect of roughness on the hydrodynamic pressure of surface texture is significant and the load carrying capacity decreases with the increase of the roughness ratio because the roughness greatly suppresses the hydrodynamic effect of dimples. It shows that the roughness ratio of surface may be as small as possible to suppress the effect of hydrodynamic lubrication. Additionally,there are the optimum values of the micro-dimple depth and area density to maximize the load carrying capacity for any given value of the roughness ratio. The proposed approach is capable of accurately reflects the influence of roughness on the hydrodynamic pressure, and developed a deterministic model to investigate the hydrodynamic lubrication of textured surfaces.展开更多
To obtain the form error of micro-structured surfaces robustly and accurately, a form er- ror evaluation method was developed based on the real coded genetic algorithm (RCGA). The meth- od employed the average squar...To obtain the form error of micro-structured surfaces robustly and accurately, a form er- ror evaluation method was developed based on the real coded genetic algorithm (RCGA). The meth- od employed the average squared distance as the matching criterion. The point to surface distance was achieved by use of iterative method and the modeling of RCGA for the surface matching was also presented in detail. Parameter selection for RCGA including the crossover rate and population size was discussed. Evaluation results of series simulated surfaces without form error show that this method can achieve the accuracy of root mean square deviation ( Sq ) less than 1 nm and surface pro- file error ( St ) less than 4 nm. Evaluation of the surfaces with different simulated errors illustrates that the proposed method can also robustly obtain the form error with nano-meter precision. The e- valuation of actual measured surfaces further indicates that the proposed method is capable of pre- cisely evaluating micro-structured surfaces.展开更多
In this study, compounded surface modification technology-high current pulsed electron beam (HCPEB) + micro-plasma oxidation (MPO) was applied to treat ZK60 Mg alloys. The characteristics of the microstructure of...In this study, compounded surface modification technology-high current pulsed electron beam (HCPEB) + micro-plasma oxidation (MPO) was applied to treat ZK60 Mg alloys. The characteristics of the microstructure of ZK60 Mg alloy after single MPO and HCPEB+MPO compounded treatment were investigated by SEM. The results showed that the density of the ceramic layer of HCPEB+MPO-treated ZK60 Mg alloy was improved and defects were reduced compared to that under MPO treatment alone. Surface modified layer of ZK60 Mg alloys treated by HCPEB+MPO was divided into three zones, namely the top loose ceramic zone, middle compact zone and inside HCPEB-induced melted zone. Corrosion resistance of ZK60 Mg alloy before and after the compounded surface modification was measured in a solution of 3.5% NaCl by potentiodynamic polarization curves. It was found that the corrosion current density of ZK60 Mg alloys could be reduced by about three orders of magnitude, from 311μA/cm^2 of the original sample to 0.2μA/cm^2 of the HCPEB+MPO-treated sample. This indicates the great application potential of the HCPEB+MPO compounded surface modification technology in improving the corrosion resistance of ZK60 Mg alloys in the future.展开更多
During the Austral summer of 1996/1997, the First Chinese Antarctic Inland Expedition reached the inland area about 330 km along the direction around 76°E from Zhongshan Station, and collected 84 surface snow...During the Austral summer of 1996/1997, the First Chinese Antarctic Inland Expedition reached the inland area about 330 km along the direction around 76°E from Zhongshan Station, and collected 84 surface snow samples at an interval of 4 km . Micro particle analysis of the samples indicates that the micro particle concentration apparently decreases with the increasing of altitude, and the amplitudes of micro particle concentration is much larger in the lower altitude than in the higher altitude. Further analysis of grain size distributions of micro particle, percentage of micro particles from different sources and variations with altitude suggest that micro particles in this area are from a considerably dominant source. Although this area is controlled by polar easterly wind and katabatic wind, transportation and deposition of the micro particles are mainly influenced by marine transportation in coastal area.展开更多
To aim at prototype parts fabricated with fused deposition modeling (FDM) process, the problems how to improve and enhance their surface micro-precision are studied. The producing mechanism of surface roughness is e...To aim at prototype parts fabricated with fused deposition modeling (FDM) process, the problems how to improve and enhance their surface micro-precision are studied. The producing mechanism of surface roughness is explained with three aspects concretely including the principle error of rapid prototyping (RP) process, the inherent characteristics of FDM process, and some mi- cro-scratches on the surface of the extruded fiber. Based on the micro-characters of section shape of the FDM prototype, a physical model reflecting the outer shape characters is abstracted. With the physical simplified and deduced, the evaluating equations of surface roughness are acquired. According to the FDM sample parts with special design for experimental measurement, the real surface roughness values of different inclined planes are obtained. And the measuring values of surface roughness are compared with the calculation values. Furthermore, the causes of surface roughness deviation between measuring values and calculation values are respectively analyzed and studied. With the references of analytic conclusions, the measuring values of the experimental part surface are revised, and the revised values nearly accord with the calculation values. Based on the influencing principles of FDM process parameters and special post processing of FDM prototype parts, some concrete measures are proposed to reduce the surface roughness of FDM parts, and the applying effects are better.展开更多
The objective of this study was to investigate the effect of a new combined micro/nanoscale implant surface feature on osteoblasts' behaviors including cell morphology, adhesion, proliferation, differentiation, and m...The objective of this study was to investigate the effect of a new combined micro/nanoscale implant surface feature on osteoblasts' behaviors including cell morphology, adhesion, proliferation, differentiation, and mineralization in vitro. A new micro/nano-hybrid topography surface was fabricated on commercial pure titanium(Cp Ti) by a two-step sandblasted acid-etching and subsequent alkali-and heattreatment(SA-AH). The conventional sandblasted/acid-etching(SA) treatment and alkali and heat(AH) treatment were also carried out on the Cp Ti as controls. Surface microstructures of the Ti disc samples were assessed by scanning electron microscopy(SEM). The neonatal rat calvaria-derived osteoblasts were seeded on these discs and the initial cell morphology was evaluated by SEM and immunofluorescence. Initial adhesion of the cells was then assayed by DAPI staining at 1, 2, and 4 h after seeding. The Cell Counting Kit-8(CCact K8) assay, gene expression of osteoblastic markers(ALP, Col 1, OCN, BSP, OSX, Cbfα1) and Alizarin Red S staining assays were monitored respectively for cell proliferations, differentiation and mineralization. The results show significant differences in osteoblast's behaviors on the four kinds of Ti surfaces. Compared with Cp Ti surface, the SA and AH treatment can significantly promote cell adhesion, differentiation and mineralization of osteoblasts. In particular, the combined SA and AH treatments exhibit synergistic effects in comparison with the treatment of SA and AH individually, and are more favorable for stimulating a series of osteogenous responses from cell adhesion to mineralization of osteoblasts. In summary, this study provides some new evidence that the integrated micro/nanostructure on the Cp Ti surface may promote bone osseointegration between the Ti implantbone interfaces in vitro.展开更多
Modeling of the roughness in micro-nano scale and its influence have not been fully investigated, however the roughness will cause amplitude and phase errors of the radiating slot, and decrease the precision and effic...Modeling of the roughness in micro-nano scale and its influence have not been fully investigated, however the roughness will cause amplitude and phase errors of the radiating slot, and decrease the precision and efficiency of the SWA in Ku-band. Firstly, the roughness is simulated using the electromechanical coupled(EC) model. The relationship between roughness and the antenna's radiation properties is obtained. For verification, an antenna proto- type is manufactured and tested, and the simulation method is introduced. According to the prototype, a contrasting experiment dealing with the flatness of the radiating plane is conducted to test the simulation method. The advantage of the EC model is validated by comparisons of the EC model and two classical roughness models (sine wave and fractal function), which shows that the EC model gives a more accurate description model for roughness, the maxi- mum error is 13%. The existence of roughness strongly broadens the beamwidth and raises the side-lobe level of SWA, which is 1.2 times greater than the ideal antenna. In addition, effect of the EC model's evaluation indices is investigated, the most affected scale of the roughness is found, which is 1/10 of the working wavelength. The proposed research provides the instruction for antenna designing and manufacturing.展开更多
The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elas...The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elasticity theories using the differential quadrature method (DQM) is presented. Main advantages of the MCST over the classical theory (CT) are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter. Based on the nonlinear von Karman assumption, the governing equations of equilibrium for the micro-classical plate consid- ering midplane displacements are derived based on the minimum principle of potential energy. Using the DQM, the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained. Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature. A parametric study is conducted to show the effects of the aspect ratio, the side-to-thickness ratio, Eringen's nonlocal parameter, the material length scale parameter, Young's modulus of the surface layer, the surface residual stress, the polymer matrix coefficients, and various boundary conditions on the dimensionless uniaxial, biaxial, and shear critical buckling loads. The results indicate that the critical buckling loads are strongly sensitive to Eringen's nonlocal parameter, the material length scale parameter, and the surface residual stress effects, while the effect of Young's modulus of the surface layer on the critical buckling load is negligible. Also, considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate. The results show that the critical biaxial buckling load increases with an increase in G12/E2 and vice versa for E1/E2. It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude. Because of the most lightweight micro-composite materials with high strength/weight and stiffness/weight ratios, it is anticipated that the results of the present work are useful in experimental characterization of the mechanical properties of micro-composite plates in the aircraft industry and other engineering applications.展开更多
The phenolic emulsifiers used in emulsified asphalt of micro-surfacing, which was the most important tools in the road maintenance, were investigated by control technology. Many factors influencing this reaction were ...The phenolic emulsifiers used in emulsified asphalt of micro-surfacing, which was the most important tools in the road maintenance, were investigated by control technology. Many factors influencing this reaction were studied and three kinds of phenolic emulsifiers were prepared without catalyst in ethanol. The performance was researched that 2-({2-[2-(2-Amino-ethylamino)-ethylamino]-ethyl-amino}-methyl)-4- nonyl-phenol (abbreviated as TETA) could be used in micro-surface. With addition of 0.5 % demulsifier, the mixing time was extended to 120 seconds obviously, and the cohesion torque (60 min) was 2.8 N*m, which satisfied the opening traffic time shorter than 1 h. The wet track abrasion (6 d) was lower than 807 g/m2, with interracial modifier added, but the load wheel was increased with interfacial modifier increasing. When the TETA: demulsifier: interracial modifier =3:1:3, excellent performance was obtained and the experimental results met the International Slurry Surfacing Association (ISSA) standard. The synthesis process of this emulsifier is simple and the performance used in micro-surface was excellent, so this kind of emulsifier could have a better application future.展开更多
The application of rolling for fabricating grate on titanium stripe has been explored in this paper. Then the mechanically robust Ti(C,N) diffusion layer was synthetized directly on the grates by laser carbonitridin...The application of rolling for fabricating grate on titanium stripe has been explored in this paper. Then the mechanically robust Ti(C,N) diffusion layer was synthetized directly on the grates by laser carbonitriding in the mixture gas of nitrogen and methane. The results shows that the carbonitriding process is accelerated by temperature enhancement with decreasing scanning speed, The Ti(C,N) diffusion layer is kept at 2 ~nn in thickness, when the scanning speed is smaller than 4 mm/s. The contact angle increases from 20~ to 143.6~ by designing an appropriate grate size and surface roughness. Meanwhile, the relationship between hydrophobicity, hardness performance and scanning speed is also discussed. The hardness of diffusion layer increases with decreasing laser scanning speed, and is up to 11.2 GPa. The surface structure and hydrophobic state are maintained after three cycles of sandpaper abrasion, which has improved the robustness of surface grate.展开更多
The surface micro-discharge(SMD)excited by pulsed voltage in open air is experimentally studied by measuring its voltage,current,emission image,emission spectrum,and ultraviolet(UV)absorption spectrum.It is found that...The surface micro-discharge(SMD)excited by pulsed voltage in open air is experimentally studied by measuring its voltage,current,emission image,emission spectrum,and ultraviolet(UV)absorption spectrum.It is found that the SMD occurs intermittently in each cycle,and that it consists of many filaments on the surface of grounded electrode.While the applied voltage’s peak value Up increases from 1.75 kV to 7.25 kV,the discharge area keeps expanding until Up≈6 kV,when the discharge occupies all the available area.The emission spectrum of nitrogen metastable N2(C-B)and the density of ozone increase almost linearly.The ozone density decreases hyperbolically downstream of the grounded electrode due to the diffusion in open air.The characteristics of pulsed SMD are presented and analyzed as well,which may be referred by further investigations.展开更多
A microtribometer is used to measure and compare pull-off forces and friction forces exerted on (a) micro-dimpled silicon surfaces, (b) bare silicon surfaces, and (c) octadecyltrichlorosilane (OTS) treated sil...A microtribometer is used to measure and compare pull-off forces and friction forces exerted on (a) micro-dimpled silicon surfaces, (b) bare silicon surfaces, and (c) octadecyltrichlorosilane (OTS) treated silicon surfaces at different relative humidity (RH) levels separately. It is found that above a critical RH level, the capillary pull-off force increases abruptly and that the micro-dimple textured surface has a lower critical RH value as well as a higher pull-off force value than the other two surfaces. A micro topography parameter, namely sidewall area ratio, is found to play a major role in controlling the capillary pull-off force. Furthermore, micro-dimpled silicon surface is also proved to be not sensitive to variation in RH level, and can realize a stable and decreased friction coefficient compared with un-textured silicon surfaces. The reservoir-like function of micro dimples is considered to weaken or avoid the breakage effect of liquid bridges at different RH levels, thereby maintaining a stable frictional behaviour.展开更多
The cutting performance of particulate reinforced me tallic matrix composites(PRMMCs) SiC p/Al in ultrasonic vibration cutting and c ommon cutting with carbide tools and PCD tools was researched in the paper. Mic rost...The cutting performance of particulate reinforced me tallic matrix composites(PRMMCs) SiC p/Al in ultrasonic vibration cutting and c ommon cutting with carbide tools and PCD tools was researched in the paper. Mic rostructure of machined surface was described, the relation between cutting para meters and surface roughness was presented, and characteristic of the surface re mained stress was also presented. Furthermore, wear regularity and abrasion resi stance ability of tools in ultrasonic vibration cutting and common cutting o f PRMMCs were discussed in detail. The test results show: (1) The surface config urations are obviously different when using different tools to machine such PRMM Cs. The surface machined with carbide tools looks luminous and orderly and there are seldom surface defects on it. The reason is that the soft basal body is apt to flow during cutting, therefore a layer of Al matrix film covers machined sur face. On the contrary, the surface machined with PCD tools looks lackluster. But the profile of machined surface is very clear. Superfine grooves, pits and blac k reinforce particulates can be seen easily without obvious Al film. (2) Because of unstable cutting process in common cutting, the surface is easy to produce s ome defects such as burrs, built-up edges and so on so that the quality of surf ace becomes very poor. Vibration cutting can reduce the influence of tearing, pl astic deformation and built-up edge in cutting and can restrain flutter so as t o make cutting process more stable. Therefore, surface roughness of vibration cu tting is better than that of common cutting. (3) There is an optimum value of fe ed rate in vibration cutting of PRMMCs due to the influence of material characte ristics. Whether feed rate is more than or less than this optimum value, surface roughness will increase. (4) According to analyzing the wear rate of tools in v ibration cutting PRMMCs, it can be concluded that abrasion resistance of tools w ill be improved remarkably when vibration cutting composites have a lower pe rcentage of reinforce particulate. If the percentage of reinforce particulate is higher, the influence on abrasion resistance of carbide tool in vibration cut ting will not be obvious. The research result indicates that vibration cutting effect has a close relation with material characteristics.展开更多
The governing differential equation of micro/nanbeams with atom/molecule adsorption is derived in the presence of surface effects using the nonlocal elasticity. The effects of the nonlocal parameter, the adsorption de...The governing differential equation of micro/nanbeams with atom/molecule adsorption is derived in the presence of surface effects using the nonlocal elasticity. The effects of the nonlocal parameter, the adsorption density, and the surface parameter on the resonant frequency of the micro/nanobeams are investigated. It is found that, in ad- dition to the nonlocal parameter and the surface parameter, the bending rigidity and the adsorption-induced mass exhibit different behaviors with the increase in the adsorption density depending on the adatom category and the substrate material.展开更多
Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub&...Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> was determined by nano-particle size analyzer, and the effects of nano-α-Al<sub>2</sub>O<sub>3</sub> content, ethanol-aqueous solution ratio and KH560 dosage on the dispersion and particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> were investigated. The material structure before and after modification was determined by Fourier transform infrared spectroscopy (FTIR). Aqueous polyurethane resin and inorganic components are combined with modified nano-α-Al<sub>2</sub>O<sub>3</sub> dispersion to form chromium-free passivation solution. The solution is coated on the galvanized sheet, the adhesion and surface hardness are tested, the bonding strength of the coating and the surface hardness of the substrate are discussed. The corrosion resistance and surface morphology of the matrix were investigated by electrochemical test, neutral salt spray test and scanning electron microscope test. The chromium-free passivation film formed after the modification of nano-α-Al<sub>2</sub>O<sub>3</sub> increases the surface hardness of galvanized sheet by about 85%. The corrosion resistance of the film is better than that of a single polyurethane film. The results show that the surface hardness and corrosion resistance of polyurethane resin composite passivation film are significantly improved by the introduction of nano-α-Al<sub>2</sub>O<sub>3</sub>.展开更多
文摘The major objective of this research was to discuss the effects of loading rate on the flexural-tension properties and uniaxial compressive strength of micro-surfacing mixture using three-point bending test and uniaxial compressive test respectively. As a preventive maintenance surface treatment on asphalt pavement, micro-surfacing was formed on the basis of the ISSA recommendation of an optimum micro-surfacing design. Tests were conducted over a wide range of temperature to investigate the difference of properties from low loading rate to a relatively high loading rate. Three-point bending test was used to study the flexural strength, strain and modulus of micro-surfacing mixture, and uniaxial compressive test was carried out to obtain the relationship between strength and the loading rate as well as temperature. The experimental results showed that flexural strength at high loading rate was larger than that at low loading rate. The flexural strength difference between low and high loading rate enlarged when the temperature rose. The flexural strain at high loading rate increased compared with results of the low loading rate. Results of the flexural modulus revealed that micro-surfacing mixture exhibited better anti-cracking characteristic at low temperature when given a relatively low loading rate. Results of uniaxial compressive test revealed that the strength difference of micro-surfacing among different loading rates increased with the increase of temperature. The logarithm relationship between the strength and loading rate over a wide range of temperature was obtained to compare the experimental and predicted values, which resulting in a reasonable consistency.
文摘The work presented here is a study on the measurement and prediction of the rutting resistance of previously rutted asphalt mixes rehabilitated with a layer of micro-surfacing manufactured with virgin and recycled aggregates at different stages of aging. The experimental procedure consisted of rutting tests on hot mix asphalt slabs already degraded and repaired with virgin and recycled micro-surfacing. Then, the evolution of the behavior of micro-surfacing cast on the hot mix asphalt slabs is observed according to loading cycles of the pavement rutting tester MLPC. Before rutting tests, slabs are subjected to 24 hours at 50°C and aged for 2 days and 5 days at 85°C in the oven. The results showed rutting percentages of 6.3% for hot mix asphalt slabs aged for 2 days and 7.2% for 5 days. These hot mix slabs repaired with virgin micro-surfacing have rutting percentage of about 9.2 % for 2 days of aging and 6.5% for 5 days of aging. While, the HMA slabs repaired with recycled micro-surfacing have rutting percentage of about 8.1% for 2 days of aging and 5.9% for 5 days of aging. These results allowed the development of a prediction model based essentially on three predictor variables including cycle number, rutting state and percentage of water in the micro-surfacing material. The developed model shows a strong correlation between the predicted rutting values and the rutting values measured with the MLPC rut tester. Thermal aging in oven has a positive impact on the resistance to permanent deformation of new asphalt mixes and those rehabilitated with micro-surfacing. The parameters of rutting state and contribution water are significant in the rutting prediction model, while the cycle number remains a non-significant parameter in the model but determinant.
文摘In the present work, osteoblast behavior on a hierarchical micro-/nano-structured titanium surface was investigated. A hi- erarchical hybrid micro-/nano-structured titanium surface topography was produced via Electrolytic Etching (EE). MG-63 cells were cultured on disks for 2 h to 7 days. The osteoblast response to the hierarchical hybrid micro-/nano-structured titanium surface was evaluated through the osteoblast cell morphology, attachment and proliferation. For comparison, MG-63 cells were also cultured on Sandblasted and Acid-etched (SEA) as well as Machined (M) surfaces respectively. The results show signifi- cant differences in the adhesion rates and proliferation levels of MG-63 cells on EE, SLA, and M surfaces. Both adhesion rate and proliferation level on EE surface are higher than those on SLA and M surfaces. Therefore, we may expect that, comparing with SLA and M surfaces, bone growth on EE surface could be accelerated and bone formation could be promoted at an early stage, which could be applied in the clinical practices for immediate and early-stage loadings.
基金supported by National Natural Science Foundation for Young Scholars of China(Grant No.51205053)National Natural Science Foundation of China(Grant No.51075064)
文摘The current research of micro-grinding mainly focuses on the optimal processing technology for different materials. However, the material removal mechanism in micro-grinding is the base of achieving high quality processing surface. Therefore, a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography is proposed in this paper. The differences of material removal mechanism between convention grinding process and micro-grinding process are analyzed. Topography characterization has been done on micro-grinding tools which are fabricated by electroplating. Models of grain density generation and grain interval are built, and new predicting model of micro-grinding surface roughness is developed. In order to verify the precision and application effect of the surface roughness prediction model proposed, a micro-grinding orthogonally experiment on soda-lime glass is designed and conducted. A series of micro-machining surfaces which are 78 nm to 0.98 ~tm roughness of brittle material is achieved. It is found that experimental roughness results and the predicting roughness data have an evident coincidence, and the component variable of describing the size effects in predicting model is calculated to be 1.5x 107 by reverse method based on the experimental results. The proposed model builds a set of distribution to consider grains distribution densities in different protrusion heights. Finally, the characterization of micro-grinding tools which are used in the experiment has been done based on the distribution set. It is concluded that there is a significant coincidence between surface prediction data from the proposed model and measurements from experiment results. Therefore, the effectiveness of the model is demonstrated. This paper proposes a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography, which would provide significant research theory and experimental reference of material removal mechanism in micro-grinding of soda-lime glass.
基金Supported by National Natural Science Foundation of China(Grant Nos.51305168,51375211,51375213)Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20130524)Research Foundation for Advanced Talents of Jiangsu University,China(Grant No.13JDG090)
文摘Surface texturing has been applied to improving the tribological performance of mechanical components for many years. Currently, the researches simulate the film pressure distribution of textured rough surfaces on the basis of the average flow model, and however the influence of roughness on the film pressure distribution could not be precisely expressed. Therefore, in order to study the hydrodynamic lubrication of the rough textured surfaces, sinusoidal waves are employed to characterize untextured surfaces. A deterministic model for hydrodynamic lubrication of microdimple textured rough surfaces is developed to predict the distribution of hydrodynamic pressure. By supplementing with the JFO cavitation boundary, the load carrying capacity of the film produced by micro-dimples and roughness is obtained. And the geometric parameters of textured rough surface are optimized to obtain the maximum hydrodynamic lubrication by specifying an optimization goal of the load carrying capacity. The effect of roughness on the hydrodynamic pressure of surface texture is significant and the load carrying capacity decreases with the increase of the roughness ratio because the roughness greatly suppresses the hydrodynamic effect of dimples. It shows that the roughness ratio of surface may be as small as possible to suppress the effect of hydrodynamic lubrication. Additionally,there are the optimum values of the micro-dimple depth and area density to maximize the load carrying capacity for any given value of the roughness ratio. The proposed approach is capable of accurately reflects the influence of roughness on the hydrodynamic pressure, and developed a deterministic model to investigate the hydrodynamic lubrication of textured surfaces.
基金Supported by the Programme of Introducing Talents of Discipline to Universities (B07018)
文摘To obtain the form error of micro-structured surfaces robustly and accurately, a form er- ror evaluation method was developed based on the real coded genetic algorithm (RCGA). The meth- od employed the average squared distance as the matching criterion. The point to surface distance was achieved by use of iterative method and the modeling of RCGA for the surface matching was also presented in detail. Parameter selection for RCGA including the crossover rate and population size was discussed. Evaluation results of series simulated surfaces without form error show that this method can achieve the accuracy of root mean square deviation ( Sq ) less than 1 nm and surface pro- file error ( St ) less than 4 nm. Evaluation of the surfaces with different simulated errors illustrates that the proposed method can also robustly obtain the form error with nano-meter precision. The e- valuation of actual measured surfaces further indicates that the proposed method is capable of pre- cisely evaluating micro-structured surfaces.
基金supported by Liaoning BaiQianWan Talents Program of China (No. 2008921028)Doctoral Fund of Ministry of Education of China (No. 200801451082)
文摘In this study, compounded surface modification technology-high current pulsed electron beam (HCPEB) + micro-plasma oxidation (MPO) was applied to treat ZK60 Mg alloys. The characteristics of the microstructure of ZK60 Mg alloy after single MPO and HCPEB+MPO compounded treatment were investigated by SEM. The results showed that the density of the ceramic layer of HCPEB+MPO-treated ZK60 Mg alloy was improved and defects were reduced compared to that under MPO treatment alone. Surface modified layer of ZK60 Mg alloys treated by HCPEB+MPO was divided into three zones, namely the top loose ceramic zone, middle compact zone and inside HCPEB-induced melted zone. Corrosion resistance of ZK60 Mg alloy before and after the compounded surface modification was measured in a solution of 3.5% NaCl by potentiodynamic polarization curves. It was found that the corrosion current density of ZK60 Mg alloys could be reduced by about three orders of magnitude, from 311μA/cm^2 of the original sample to 0.2μA/cm^2 of the HCPEB+MPO-treated sample. This indicates the great application potential of the HCPEB+MPO compounded surface modification technology in improving the corrosion resistance of ZK60 Mg alloys in the future.
文摘During the Austral summer of 1996/1997, the First Chinese Antarctic Inland Expedition reached the inland area about 330 km along the direction around 76°E from Zhongshan Station, and collected 84 surface snow samples at an interval of 4 km . Micro particle analysis of the samples indicates that the micro particle concentration apparently decreases with the increasing of altitude, and the amplitudes of micro particle concentration is much larger in the lower altitude than in the higher altitude. Further analysis of grain size distributions of micro particle, percentage of micro particles from different sources and variations with altitude suggest that micro particles in this area are from a considerably dominant source. Although this area is controlled by polar easterly wind and katabatic wind, transportation and deposition of the micro particles are mainly influenced by marine transportation in coastal area.
基金This project is supported by National Natural Science Foundation of China (No. 50575139)
文摘To aim at prototype parts fabricated with fused deposition modeling (FDM) process, the problems how to improve and enhance their surface micro-precision are studied. The producing mechanism of surface roughness is explained with three aspects concretely including the principle error of rapid prototyping (RP) process, the inherent characteristics of FDM process, and some mi- cro-scratches on the surface of the extruded fiber. Based on the micro-characters of section shape of the FDM prototype, a physical model reflecting the outer shape characters is abstracted. With the physical simplified and deduced, the evaluating equations of surface roughness are acquired. According to the FDM sample parts with special design for experimental measurement, the real surface roughness values of different inclined planes are obtained. And the measuring values of surface roughness are compared with the calculation values. Furthermore, the causes of surface roughness deviation between measuring values and calculation values are respectively analyzed and studied. With the references of analytic conclusions, the measuring values of the experimental part surface are revised, and the revised values nearly accord with the calculation values. Based on the influencing principles of FDM process parameters and special post processing of FDM prototype parts, some concrete measures are proposed to reduce the surface roughness of FDM parts, and the applying effects are better.
基金Funded by the Natural Science Fundation of Zhejiang Province(Nos.Y2080956 and Y4110169)the National Natural Science Foundation of China(Nos.51102211,and 20934003)the Science and Technique Plans of Wenzhou City(Nos.Y20070093 and H20100076)
文摘The objective of this study was to investigate the effect of a new combined micro/nanoscale implant surface feature on osteoblasts' behaviors including cell morphology, adhesion, proliferation, differentiation, and mineralization in vitro. A new micro/nano-hybrid topography surface was fabricated on commercial pure titanium(Cp Ti) by a two-step sandblasted acid-etching and subsequent alkali-and heattreatment(SA-AH). The conventional sandblasted/acid-etching(SA) treatment and alkali and heat(AH) treatment were also carried out on the Cp Ti as controls. Surface microstructures of the Ti disc samples were assessed by scanning electron microscopy(SEM). The neonatal rat calvaria-derived osteoblasts were seeded on these discs and the initial cell morphology was evaluated by SEM and immunofluorescence. Initial adhesion of the cells was then assayed by DAPI staining at 1, 2, and 4 h after seeding. The Cell Counting Kit-8(CCact K8) assay, gene expression of osteoblastic markers(ALP, Col 1, OCN, BSP, OSX, Cbfα1) and Alizarin Red S staining assays were monitored respectively for cell proliferations, differentiation and mineralization. The results show significant differences in osteoblast's behaviors on the four kinds of Ti surfaces. Compared with Cp Ti surface, the SA and AH treatment can significantly promote cell adhesion, differentiation and mineralization of osteoblasts. In particular, the combined SA and AH treatments exhibit synergistic effects in comparison with the treatment of SA and AH individually, and are more favorable for stimulating a series of osteogenous responses from cell adhesion to mineralization of osteoblasts. In summary, this study provides some new evidence that the integrated micro/nanostructure on the Cp Ti surface may promote bone osseointegration between the Ti implantbone interfaces in vitro.
基金Supported by National Natural Science Foundation of China(Grant Nos.51305322,51405364,51475348)
文摘Modeling of the roughness in micro-nano scale and its influence have not been fully investigated, however the roughness will cause amplitude and phase errors of the radiating slot, and decrease the precision and efficiency of the SWA in Ku-band. Firstly, the roughness is simulated using the electromechanical coupled(EC) model. The relationship between roughness and the antenna's radiation properties is obtained. For verification, an antenna proto- type is manufactured and tested, and the simulation method is introduced. According to the prototype, a contrasting experiment dealing with the flatness of the radiating plane is conducted to test the simulation method. The advantage of the EC model is validated by comparisons of the EC model and two classical roughness models (sine wave and fractal function), which shows that the EC model gives a more accurate description model for roughness, the maxi- mum error is 13%. The existence of roughness strongly broadens the beamwidth and raises the side-lobe level of SWA, which is 1.2 times greater than the ideal antenna. In addition, effect of the EC model's evaluation indices is investigated, the most affected scale of the roughness is found, which is 1/10 of the working wavelength. The proposed research provides the instruction for antenna designing and manufacturing.
基金supported by the Iranian Nanotechnology Development Committee and the University of Kashan(No.363452/10)
文摘The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elasticity theories using the differential quadrature method (DQM) is presented. Main advantages of the MCST over the classical theory (CT) are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter. Based on the nonlinear von Karman assumption, the governing equations of equilibrium for the micro-classical plate consid- ering midplane displacements are derived based on the minimum principle of potential energy. Using the DQM, the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained. Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature. A parametric study is conducted to show the effects of the aspect ratio, the side-to-thickness ratio, Eringen's nonlocal parameter, the material length scale parameter, Young's modulus of the surface layer, the surface residual stress, the polymer matrix coefficients, and various boundary conditions on the dimensionless uniaxial, biaxial, and shear critical buckling loads. The results indicate that the critical buckling loads are strongly sensitive to Eringen's nonlocal parameter, the material length scale parameter, and the surface residual stress effects, while the effect of Young's modulus of the surface layer on the critical buckling load is negligible. Also, considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate. The results show that the critical biaxial buckling load increases with an increase in G12/E2 and vice versa for E1/E2. It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude. Because of the most lightweight micro-composite materials with high strength/weight and stiffness/weight ratios, it is anticipated that the results of the present work are useful in experimental characterization of the mechanical properties of micro-composite plates in the aircraft industry and other engineering applications.
基金Funded by the National Key Basic Research and Development Plan(No.2012CB724601)the Jiangsu Provincial Natural Science Foundation(No.BK 2008503)
文摘The phenolic emulsifiers used in emulsified asphalt of micro-surfacing, which was the most important tools in the road maintenance, were investigated by control technology. Many factors influencing this reaction were studied and three kinds of phenolic emulsifiers were prepared without catalyst in ethanol. The performance was researched that 2-({2-[2-(2-Amino-ethylamino)-ethylamino]-ethyl-amino}-methyl)-4- nonyl-phenol (abbreviated as TETA) could be used in micro-surface. With addition of 0.5 % demulsifier, the mixing time was extended to 120 seconds obviously, and the cohesion torque (60 min) was 2.8 N*m, which satisfied the opening traffic time shorter than 1 h. The wet track abrasion (6 d) was lower than 807 g/m2, with interracial modifier added, but the load wheel was increased with interfacial modifier increasing. When the TETA: demulsifier: interracial modifier =3:1:3, excellent performance was obtained and the experimental results met the International Slurry Surfacing Association (ISSA) standard. The synthesis process of this emulsifier is simple and the performance used in micro-surface was excellent, so this kind of emulsifier could have a better application future.
文摘The application of rolling for fabricating grate on titanium stripe has been explored in this paper. Then the mechanically robust Ti(C,N) diffusion layer was synthetized directly on the grates by laser carbonitriding in the mixture gas of nitrogen and methane. The results shows that the carbonitriding process is accelerated by temperature enhancement with decreasing scanning speed, The Ti(C,N) diffusion layer is kept at 2 ~nn in thickness, when the scanning speed is smaller than 4 mm/s. The contact angle increases from 20~ to 143.6~ by designing an appropriate grate size and surface roughness. Meanwhile, the relationship between hydrophobicity, hardness performance and scanning speed is also discussed. The hardness of diffusion layer increases with decreasing laser scanning speed, and is up to 11.2 GPa. The surface structure and hydrophobic state are maintained after three cycles of sandpaper abrasion, which has improved the robustness of surface grate.
基金Project supported by Fundamental Research Fund for the Central Universities of China,State Key Laboratory of Electrical Insulation and Power Equipment(EIPE11108)
文摘The surface micro-discharge(SMD)excited by pulsed voltage in open air is experimentally studied by measuring its voltage,current,emission image,emission spectrum,and ultraviolet(UV)absorption spectrum.It is found that the SMD occurs intermittently in each cycle,and that it consists of many filaments on the surface of grounded electrode.While the applied voltage’s peak value Up increases from 1.75 kV to 7.25 kV,the discharge area keeps expanding until Up≈6 kV,when the discharge occupies all the available area.The emission spectrum of nitrogen metastable N2(C-B)and the density of ozone increase almost linearly.The ozone density decreases hyperbolically downstream of the grounded electrode due to the diffusion in open air.The characteristics of pulsed SMD are presented and analyzed as well,which may be referred by further investigations.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 50575123 and 50730007)China Scholarship Council (CSC) and German Research Foundation (DFG)
文摘A microtribometer is used to measure and compare pull-off forces and friction forces exerted on (a) micro-dimpled silicon surfaces, (b) bare silicon surfaces, and (c) octadecyltrichlorosilane (OTS) treated silicon surfaces at different relative humidity (RH) levels separately. It is found that above a critical RH level, the capillary pull-off force increases abruptly and that the micro-dimple textured surface has a lower critical RH value as well as a higher pull-off force value than the other two surfaces. A micro topography parameter, namely sidewall area ratio, is found to play a major role in controlling the capillary pull-off force. Furthermore, micro-dimpled silicon surface is also proved to be not sensitive to variation in RH level, and can realize a stable and decreased friction coefficient compared with un-textured silicon surfaces. The reservoir-like function of micro dimples is considered to weaken or avoid the breakage effect of liquid bridges at different RH levels, thereby maintaining a stable frictional behaviour.
文摘The cutting performance of particulate reinforced me tallic matrix composites(PRMMCs) SiC p/Al in ultrasonic vibration cutting and c ommon cutting with carbide tools and PCD tools was researched in the paper. Mic rostructure of machined surface was described, the relation between cutting para meters and surface roughness was presented, and characteristic of the surface re mained stress was also presented. Furthermore, wear regularity and abrasion resi stance ability of tools in ultrasonic vibration cutting and common cutting o f PRMMCs were discussed in detail. The test results show: (1) The surface config urations are obviously different when using different tools to machine such PRMM Cs. The surface machined with carbide tools looks luminous and orderly and there are seldom surface defects on it. The reason is that the soft basal body is apt to flow during cutting, therefore a layer of Al matrix film covers machined sur face. On the contrary, the surface machined with PCD tools looks lackluster. But the profile of machined surface is very clear. Superfine grooves, pits and blac k reinforce particulates can be seen easily without obvious Al film. (2) Because of unstable cutting process in common cutting, the surface is easy to produce s ome defects such as burrs, built-up edges and so on so that the quality of surf ace becomes very poor. Vibration cutting can reduce the influence of tearing, pl astic deformation and built-up edge in cutting and can restrain flutter so as t o make cutting process more stable. Therefore, surface roughness of vibration cu tting is better than that of common cutting. (3) There is an optimum value of fe ed rate in vibration cutting of PRMMCs due to the influence of material characte ristics. Whether feed rate is more than or less than this optimum value, surface roughness will increase. (4) According to analyzing the wear rate of tools in v ibration cutting PRMMCs, it can be concluded that abrasion resistance of tools w ill be improved remarkably when vibration cutting composites have a lower pe rcentage of reinforce particulate. If the percentage of reinforce particulate is higher, the influence on abrasion resistance of carbide tool in vibration cut ting will not be obvious. The research result indicates that vibration cutting effect has a close relation with material characteristics.
基金Project supported by the National Basic Research Program of China(No.2011CB610300)the 111 Project of China(No.B07050)+3 种基金the National Natural Science Foundation of China(Nos.10972182, 11172239,and 10902089)the Doctoral Program Foundation of Education Ministry of China (No.20106102110019)the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment of China(No.GZ0802)the Doctorate Foundation of Northwestern Polytechnical University of China(No.CX201111)
文摘The governing differential equation of micro/nanbeams with atom/molecule adsorption is derived in the presence of surface effects using the nonlocal elasticity. The effects of the nonlocal parameter, the adsorption density, and the surface parameter on the resonant frequency of the micro/nanobeams are investigated. It is found that, in ad- dition to the nonlocal parameter and the surface parameter, the bending rigidity and the adsorption-induced mass exhibit different behaviors with the increase in the adsorption density depending on the adatom category and the substrate material.
文摘Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> was determined by nano-particle size analyzer, and the effects of nano-α-Al<sub>2</sub>O<sub>3</sub> content, ethanol-aqueous solution ratio and KH560 dosage on the dispersion and particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> were investigated. The material structure before and after modification was determined by Fourier transform infrared spectroscopy (FTIR). Aqueous polyurethane resin and inorganic components are combined with modified nano-α-Al<sub>2</sub>O<sub>3</sub> dispersion to form chromium-free passivation solution. The solution is coated on the galvanized sheet, the adhesion and surface hardness are tested, the bonding strength of the coating and the surface hardness of the substrate are discussed. The corrosion resistance and surface morphology of the matrix were investigated by electrochemical test, neutral salt spray test and scanning electron microscope test. The chromium-free passivation film formed after the modification of nano-α-Al<sub>2</sub>O<sub>3</sub> increases the surface hardness of galvanized sheet by about 85%. The corrosion resistance of the film is better than that of a single polyurethane film. The results show that the surface hardness and corrosion resistance of polyurethane resin composite passivation film are significantly improved by the introduction of nano-α-Al<sub>2</sub>O<sub>3</sub>.