The influences of intense magnetic pinch effect caused by electromagnetic field with high frequency on discharge channel expansion and plasma configuration change are discussed. The change of Lorentz force exerting on...The influences of intense magnetic pinch effect caused by electromagnetic field with high frequency on discharge channel expansion and plasma configuration change are discussed. The change of Lorentz force exerting on charged particles in discharge channel is calculated under the electromagnetic field with high frequency. Through the theoretical analysis and experimental study, the forming process of discharge channel is conjectured. And it is considered that the changes of discharge channel, such as the decrease of diameter and increase of energy density, coming from the intense magnetic pinch effect in high frequency electromagnetic field, are the main reasons for a series of special phenomena on the machined surface in micro EDM.展开更多
Micro fabrication of freeform surface parts made of hard and brittle materials is always a tough job in micro machining field. This paper tries to fabricate freeform surface feature by using smooth surface of tool ele...Micro fabrication of freeform surface parts made of hard and brittle materials is always a tough job in micro machining field. This paper tries to fabricate freeform surface feature by using smooth surface of tool electrode after tool wear in micro EDM. According to the skin effect theory, the tool end shape in the stage of uniform wear can be changed by adjusting the frequency of discharge pulse. The electrical energy distributing rule of tool electrode section in RC circuit has been investigated under the influence of skin effect, and the law of spark location change has been summarized. The experimental studies demonstrate that different shapes of tool ends can be achieved by varying the pulse frequencies of discharge power supply. Additionally, a micro part of freeform surface feature with high precision and good surface quality has been successfully obtained by micro EDM through adopting the smooth surface after tool wear.展开更多
An electromagnetic coupling mathematical model is established by finite element method and is verified by the contrastive experiments of copper matrix Ni-TiN cylindrical coating electrode,copper electrode and Cu50 W e...An electromagnetic coupling mathematical model is established by finite element method and is verified by the contrastive experiments of copper matrix Ni-TiN cylindrical coating electrode,copper electrode and Cu50 W electrode.The wear mechanism of Ni-TiN/Cu composite electrode in the case of high-frequency pulse current is studied,and the influence of the fluctuation frequency of discharge current on electrode wear in micro-EDM is found out.Compared with the electrode made from homogeneous material,the high frequency electromagnetic properties of Ni-TiN composite layer can be used effectively to inhibit the effect of high frequency pulse on the electrode and improve the distribution trend of current density.展开更多
Micro-gas turbine engine(MTE) rotor is an important indicator of its property, therefore, the manufacturing technology of the microminiature rotor has become a hot area of research at home and abroad. At present, th...Micro-gas turbine engine(MTE) rotor is an important indicator of its property, therefore, the manufacturing technology of the microminiature rotor has become a hot area of research at home and abroad. At present, the main manufacturing technologies of the MTE rotor are directed forming fabrication technologies. However, these technologies have a series of problems, such as complex processing technology high manufacturing cost, and low processing efficiency, and so on. This paper takes advantage of micro electric discharge machining(micro-EDM) in the field of microminiature molds manufacturing, organizes many processing technologies of micro-EDM reasonably to improve processing accuracy, presents an integrated micro-EDM technology and its process flow to fabricate MTE rotor die, and conducts a series of experiments to verify efficiency of this integrated micro-EDM. The experiments results show that the MTE rotor die has sharp outline and ensure the good consistency of MTE rotor blades. Meanwhile, the MTE rotor die is applied to micro extrusion equipment, and technologies of micro-EDM and micro forming machining are combined based on the idea of the molds manufacturing, so the MTE rotor with higher aspect ratio and better consistency of blades can be manufactured efficiently. This research presents an integrated micro-EDM technology and its process flow, which promotes the practical process of MTE effectively.展开更多
A human face with complex 3D structure is machined with a modified fix-length compensation method in this paper.The fast development of MEMS (Micro Electromechanical Systems) has strongly enhanced the application of n...A human face with complex 3D structure is machined with a modified fix-length compensation method in this paper.The fast development of MEMS (Micro Electromechanical Systems) has strongly enhanced the application of new harder work materials.As a low cost,flexible,good repeatable machining process with negligible process forces,micro-EDM milling is well suited for freeform metallic micro structures.A major problem in micro-EDM milling of complex 3D structure is the electrode wear.A new CAM system based on the UG software platform is developed in order to get good accuracy and higher efficiency.A correction coefficient is introduced and deduced for the modified fix-length compensation method.Using this method a human face with complex 3D stricter is machined successfully by micro-EDM milling.展开更多
Servo scanning 3D micro electrical discharge machining (3D SSMEDM) is a novel and effective method in fabricating complex 3D micro structures with high aspect ratio on conducting materials. In 3D SSMEDM process, the a...Servo scanning 3D micro electrical discharge machining (3D SSMEDM) is a novel and effective method in fabricating complex 3D micro structures with high aspect ratio on conducting materials. In 3D SSMEDM process, the axial wear of tool electrode can be compensated automatically by servo-keeping discharge gap, instead of the traditional methods that depend on experiential models or intermittent compensation. However, the effects of process parameters on 3D SSMEDM have not been reported up until now. In this study, the emphasis is laid on the effects of pulse duration, peak current, machining polarity, track style, track overlap, and scanning velocity on the 3D SSMEDM performances of machining efficiency, processing status, and surface accuracy. A series of experiments were carried out by machining a micro-rectangle cavity (900 μm×600 μm) on doped silicon. The experimental results were obtained as follows. Peak current plays a main role in machining efficiency and surface accuracy. Pulse duration affects obviously the stability of discharge state. The material removal rate of cathode processing is about 3/5 of that of anode processing. Compared with direction-parallel path, contour-parallel path is better in counteracting the lateral wear of tool electrode end. Scanning velocity should be selected moderately to avoid electric arc and short. Track overlap should be slightly less than the radius of tool electrode. In addition, a typical 3D micro structure of eye shape was machined based on the optimized process parameters. These results are beneficial to improve machining stability, accuracy, and efficiency in 3D SSMEDM.展开更多
Electrical discharge machining(EDM) is a promising non-traditional micro machining technology that offers a vast array of applications in the manufacturing industry. However, scale effects occur when machining at th...Electrical discharge machining(EDM) is a promising non-traditional micro machining technology that offers a vast array of applications in the manufacturing industry. However, scale effects occur when machining at the micro-scale, which can make it difficult to predict and optimize the machining performances of micro EDM. A new concept of "scale effects" in micro EDM is proposed, the scale effects can reveal the difference in machining performances between micro EDM and conventional macro EDM. Similarity theory is presented to evaluate the scale effects in micro EDM. Single factor experiments are conducted and the experimental results are analyzed by discussing the similarity difference and similarity precision. The results show that the output results of scale effects in micro EDM do not change linearly with discharge parameters. The values of similarity precision of machining time significantly increase when scaling-down the capacitance or open-circuit voltage. It is indicated that the lower the scale of the discharge parameter, the greater the deviation of non-geometrical similarity degree over geometrical similarity degree, which means that the micro EDM system with lower discharge energy experiences more scale effects. The largest similarity difference is 5.34 while the largest similarity precision can be as high as 114.03. It is suggested that the similarity precision is more effective in reflecting the scale effects and their fluctuation than similarity difference. Consequently, similarity theory is suitable for evaluating the scale effects in micro EDM. This proposed research offers engineering values for optimizing the machining parameters and improving the machining performances of micro EDM.展开更多
The machining of small holes and array holes has been a difficult problem in machining field. Tiny hole is widely used in mechanical field, for instance, fuel injection nozzles, spinneret holes for synthetic fibers an...The machining of small holes and array holes has been a difficult problem in machining field. Tiny hole is widely used in mechanical field, for instance, fuel injection nozzles, spinneret holes for synthetic fibers and wire drawing dies. This paper investigated the application of EDM (electrical discharge machining) to the fabrication of micro structures. There are obvious limitations in the process of micro-electrical discharge machining, such as electrode wear, unstable discharge condition and low machining efficiency. The effects of EDM parameters were investigated, such as voltage, pulse frequency, and frequency of ultrasonic vibration applied to electrode. Micro holes were machined with Pt electrode made by focused-ion-beam chemical vapor deposition (FIB-CVD) and Cu electrode made by wire-electrode cutting. The comparison experiments between EDM and ECM (electrochemical machining) indicated that the processing of ECM has serious stray current corrosion and poor machining precision. Moreover, the workpiece vibration was firstly proposed to be utilized in the micro-electrical discharge machining. It can be concluded that maximum machine could be obtained under the amplitude ratio of 76%, which was an appropriate parameter.展开更多
基金Supported by the National Natural Science Foundation of China(50635040)~~
文摘The influences of intense magnetic pinch effect caused by electromagnetic field with high frequency on discharge channel expansion and plasma configuration change are discussed. The change of Lorentz force exerting on charged particles in discharge channel is calculated under the electromagnetic field with high frequency. Through the theoretical analysis and experimental study, the forming process of discharge channel is conjectured. And it is considered that the changes of discharge channel, such as the decrease of diameter and increase of energy density, coming from the intense magnetic pinch effect in high frequency electromagnetic field, are the main reasons for a series of special phenomena on the machined surface in micro EDM.
基金Supported by the National Natural Science Foundation of China (50635040) and the National Science Foundation of USA(CMMI-0728294 and CMMI- 0928873)
文摘Micro fabrication of freeform surface parts made of hard and brittle materials is always a tough job in micro machining field. This paper tries to fabricate freeform surface feature by using smooth surface of tool electrode after tool wear in micro EDM. According to the skin effect theory, the tool end shape in the stage of uniform wear can be changed by adjusting the frequency of discharge pulse. The electrical energy distributing rule of tool electrode section in RC circuit has been investigated under the influence of skin effect, and the law of spark location change has been summarized. The experimental studies demonstrate that different shapes of tool ends can be achieved by varying the pulse frequencies of discharge power supply. Additionally, a micro part of freeform surface feature with high precision and good surface quality has been successfully obtained by micro EDM through adopting the smooth surface after tool wear.
基金the National Natural Science Foundation of China for financially supporting this research through project No.51005027
文摘An electromagnetic coupling mathematical model is established by finite element method and is verified by the contrastive experiments of copper matrix Ni-TiN cylindrical coating electrode,copper electrode and Cu50 W electrode.The wear mechanism of Ni-TiN/Cu composite electrode in the case of high-frequency pulse current is studied,and the influence of the fluctuation frequency of discharge current on electrode wear in micro-EDM is found out.Compared with the electrode made from homogeneous material,the high frequency electromagnetic properties of Ni-TiN composite layer can be used effectively to inhibit the effect of high frequency pulse on the electrode and improve the distribution trend of current density.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2012CB934102)National Natural Science Foundation of China(Grant No.50835002)National Science Foundation for Young Scientists of China(Grant No.51105111)
文摘Micro-gas turbine engine(MTE) rotor is an important indicator of its property, therefore, the manufacturing technology of the microminiature rotor has become a hot area of research at home and abroad. At present, the main manufacturing technologies of the MTE rotor are directed forming fabrication technologies. However, these technologies have a series of problems, such as complex processing technology high manufacturing cost, and low processing efficiency, and so on. This paper takes advantage of micro electric discharge machining(micro-EDM) in the field of microminiature molds manufacturing, organizes many processing technologies of micro-EDM reasonably to improve processing accuracy, presents an integrated micro-EDM technology and its process flow to fabricate MTE rotor die, and conducts a series of experiments to verify efficiency of this integrated micro-EDM. The experiments results show that the MTE rotor die has sharp outline and ensure the good consistency of MTE rotor blades. Meanwhile, the MTE rotor die is applied to micro extrusion equipment, and technologies of micro-EDM and micro forming machining are combined based on the idea of the molds manufacturing, so the MTE rotor with higher aspect ratio and better consistency of blades can be manufactured efficiently. This research presents an integrated micro-EDM technology and its process flow, which promotes the practical process of MTE effectively.
基金Funded by the National Natural Science Foundation of China (No.50635040)
文摘A human face with complex 3D structure is machined with a modified fix-length compensation method in this paper.The fast development of MEMS (Micro Electromechanical Systems) has strongly enhanced the application of new harder work materials.As a low cost,flexible,good repeatable machining process with negligible process forces,micro-EDM milling is well suited for freeform metallic micro structures.A major problem in micro-EDM milling of complex 3D structure is the electrode wear.A new CAM system based on the UG software platform is developed in order to get good accuracy and higher efficiency.A correction coefficient is introduced and deduced for the modified fix-length compensation method.Using this method a human face with complex 3D stricter is machined successfully by micro-EDM milling.
基金supported by National Natural Science Foundation of China (Grant No. 50905094)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA044204, Grant No. 2009AA044205)China Postdoctoral Science Foundation (Grant No. 20080440378, Grant No. 200902097)
文摘Servo scanning 3D micro electrical discharge machining (3D SSMEDM) is a novel and effective method in fabricating complex 3D micro structures with high aspect ratio on conducting materials. In 3D SSMEDM process, the axial wear of tool electrode can be compensated automatically by servo-keeping discharge gap, instead of the traditional methods that depend on experiential models or intermittent compensation. However, the effects of process parameters on 3D SSMEDM have not been reported up until now. In this study, the emphasis is laid on the effects of pulse duration, peak current, machining polarity, track style, track overlap, and scanning velocity on the 3D SSMEDM performances of machining efficiency, processing status, and surface accuracy. A series of experiments were carried out by machining a micro-rectangle cavity (900 μm×600 μm) on doped silicon. The experimental results were obtained as follows. Peak current plays a main role in machining efficiency and surface accuracy. Pulse duration affects obviously the stability of discharge state. The material removal rate of cathode processing is about 3/5 of that of anode processing. Compared with direction-parallel path, contour-parallel path is better in counteracting the lateral wear of tool electrode end. Scanning velocity should be selected moderately to avoid electric arc and short. Track overlap should be slightly less than the radius of tool electrode. In addition, a typical 3D micro structure of eye shape was machined based on the optimized process parameters. These results are beneficial to improve machining stability, accuracy, and efficiency in 3D SSMEDM.
基金Supported by National Natural Science Foundation of China(Grant No.51375274)China Postdoctoral Science Foundation(Grant No.2014M561920)
文摘Electrical discharge machining(EDM) is a promising non-traditional micro machining technology that offers a vast array of applications in the manufacturing industry. However, scale effects occur when machining at the micro-scale, which can make it difficult to predict and optimize the machining performances of micro EDM. A new concept of "scale effects" in micro EDM is proposed, the scale effects can reveal the difference in machining performances between micro EDM and conventional macro EDM. Similarity theory is presented to evaluate the scale effects in micro EDM. Single factor experiments are conducted and the experimental results are analyzed by discussing the similarity difference and similarity precision. The results show that the output results of scale effects in micro EDM do not change linearly with discharge parameters. The values of similarity precision of machining time significantly increase when scaling-down the capacitance or open-circuit voltage. It is indicated that the lower the scale of the discharge parameter, the greater the deviation of non-geometrical similarity degree over geometrical similarity degree, which means that the micro EDM system with lower discharge energy experiences more scale effects. The largest similarity difference is 5.34 while the largest similarity precision can be as high as 114.03. It is suggested that the similarity precision is more effective in reflecting the scale effects and their fluctuation than similarity difference. Consequently, similarity theory is suitable for evaluating the scale effects in micro EDM. This proposed research offers engineering values for optimizing the machining parameters and improving the machining performances of micro EDM.
文摘The machining of small holes and array holes has been a difficult problem in machining field. Tiny hole is widely used in mechanical field, for instance, fuel injection nozzles, spinneret holes for synthetic fibers and wire drawing dies. This paper investigated the application of EDM (electrical discharge machining) to the fabrication of micro structures. There are obvious limitations in the process of micro-electrical discharge machining, such as electrode wear, unstable discharge condition and low machining efficiency. The effects of EDM parameters were investigated, such as voltage, pulse frequency, and frequency of ultrasonic vibration applied to electrode. Micro holes were machined with Pt electrode made by focused-ion-beam chemical vapor deposition (FIB-CVD) and Cu electrode made by wire-electrode cutting. The comparison experiments between EDM and ECM (electrochemical machining) indicated that the processing of ECM has serious stray current corrosion and poor machining precision. Moreover, the workpiece vibration was firstly proposed to be utilized in the micro-electrical discharge machining. It can be concluded that maximum machine could be obtained under the amplitude ratio of 76%, which was an appropriate parameter.