期刊文献+
共找到143篇文章
< 1 2 8 >
每页显示 20 50 100
Lift and Thrust Characteristics of Flapping Wing Aerial Vehicle with Pitching and Flapping Motion
1
作者 Chunjin Yu Daewon Kim Yi Zhao 《Journal of Applied Mathematics and Physics》 2014年第12期1031-1038,共8页
Development of flapping wing aerial vehicle (FWAV) has been of interest in the aerospace community with ongoing research into unsteady and low Reynolds number aerodynamics based on the vortex lattice method. Most of t... Development of flapping wing aerial vehicle (FWAV) has been of interest in the aerospace community with ongoing research into unsteady and low Reynolds number aerodynamics based on the vortex lattice method. Most of the previous research has been about pitching and plunging motion of the FWAV. With pitching and flapping motion of FMAV, people usually study it by experiment, and little work has been done by numerical calculation. In this paper, three-dimension unsteady vortex lattice method is applied to study the lift and thrust of FWAV with pitching and flapping motion. The results show that: 1) Lift is mainly produced during down stroke, however, thrust is produced during both down stroke and upstroke. The lift and thrust produced during down stroke are much more than that produced during upstroke. 2) Lift and thrust increase with the increase of flapping frequency;3) Thrust increases with the increase of flapping amplitude, but the lift decreases with the increase of flapping amplitude;4) Lift and thrust increase with the increase of mean pitching angle, but the effect on lift is much more than on thrust. This research is helpful to understand the flight mechanism of birds, thus improving the design of FWAV simulating birds. 展开更多
关键词 flapping Wing aerial vehicle LIFT CHARACTERISTICS Thrust CHARACTERISTICS
下载PDF
Human Memory/Learning Inspired Control Method for Flapping-Wing Micro Air Vehicles 被引量:3
2
作者 Garv Lebbv 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第2期127-133,共7页
The problem of flapping motion control of Micro Air Vehicles (MAVs) with flapping wings was studied in this paper.Based upon the knowledge of skeletal and muscular components of hummingbird, a dynamic model for flappi... The problem of flapping motion control of Micro Air Vehicles (MAVs) with flapping wings was studied in this paper.Based upon the knowledge of skeletal and muscular components of hummingbird, a dynamic model for flapping wing wasdeveloped.A control scheme inspired by human memory and learning concept was constructed for wing motion control ofMAVs.The salient feature of the proposed control lies in its capabilities to improve the control performance by learning fromexperience and observation on its current and past behaviors, without the need for system dynamic information.Furthermore,the overall control scheme has a fairly simple structure and demands little online computations, making it attractive for real-timeimplementation on MAVs.Both theoretical analysis and computer simulation confirms its effectiveness. 展开更多
关键词 flapping wing micro air vehicle BIO-INSPIRED memory-based control
下载PDF
Kinematic and Aerodynamic Modelling of Bi- and Quad-Wing Flapping Wing Micro-Air-Vehicle 被引量:1
3
作者 Harijono Djojodihardjo Alif Syamim S. Ramli +1 位作者 Surjatin Wiriadidjaja Azmin Shakrine Mohd Rafie 《Advances in Aerospace Science and Technology》 2016年第3期83-101,共19页
A generic approach to model the kinematics and aerodynamics of flapping wing ornithopter has been followed, to model and analyze a flapping bi- and quad-wing ornithopter and to mimic flapping wing biosystems to produc... A generic approach to model the kinematics and aerodynamics of flapping wing ornithopter has been followed, to model and analyze a flapping bi- and quad-wing ornithopter and to mimic flapping wing biosystems to produce lift and thrust for hovering and forward flight. Considerations are given to the motion of a rigid and thin bi-wing and quad-wing ornithopter in flapping and pitching motion with phase lag. Basic Unsteady Aerodynamic Approach incorporating salient features of viscous effect and leading-edge suction are utilized. Parametric study is carried out to reveal the aerodynamic characteristics of flapping bi- and quad-wing ornithopter flight characteristics and for comparative analysis with various selected simple models in the literature, in an effort to develop a flapping bi- and quad-wing ornithopter models. In spite of their simplicity, results obtained for both models are able to reveal the mechanism of lift and thrust, and compare well with other work. 展开更多
关键词 Bi-Wing Ornithopter flapping Wing Aerodynamics flapping Wing Ornithopter micro Air vehicle Quad-Wing Ornithopter
下载PDF
Aerodynamic Analysis and Simulation of Flapping Wing Aerial Vehicles on Hovering
4
作者 Liangliang Ren Hongbin Deng Qiang Shen 《Journal of Beijing Institute of Technology》 EI CAS 2019年第4期696-702,共7页
In order to design and verify control algorithms for flapping wing aerial vehicles(FWAVs),calculation models of the translational force,rotational force and virtual mass force were established with the basis on the mo... In order to design and verify control algorithms for flapping wing aerial vehicles(FWAVs),calculation models of the translational force,rotational force and virtual mass force were established with the basis on the modified quasi-steady aerodynamic theory and high lift mechanisms of insect flight.The simulation results show that the rotational force and virtual mass force can be ignored in the hovering FWAVs with simple harmonic motions in a cycle.The effects of the wing deformation on aerodynamic forces were investigated by regarding the maximum rotational angle of wingtip as a reference variable.The simulation results also show that the average lift coefficient increases and drag coefficient decreases with the increase of the maximum rotational angle of wingtip in the range of 0-90°. 展开更多
关键词 BIONICS flapping wing aerial vehicles(FWAVs) aerodynamic analysis flexible wing
下载PDF
Stress Analysis of Membrane Flapping-Wing Aerial Vehicle Based on Different Material Models
5
作者 Chunjin Yu Daewon Kim Yi Zhao 《Journal of Applied Mathematics and Physics》 2014年第12期1023-1030,共8页
Recent studies of flapping-wing aerial vehicles have been focused on the aerodynamic performance based on linear materials. Little work has been done on structural analysis based on nonlinear material models. A stress... Recent studies of flapping-wing aerial vehicles have been focused on the aerodynamic performance based on linear materials. Little work has been done on structural analysis based on nonlinear material models. A stress analysis is conducted in this study on membrane flapping-wing aerial vehicles using finite element method based on three material models, namely, linear elastic, Mooney-Rivlin non linear, and composite material models. The purpose of this paper is to understand how different types of materials affect the stresses of a flapping-wing. In the finite element simulation, each flapping cycle is divided into twelve stages and the maximum stress is calculated in each stage. The results show that 1) there are two peak stress values in one flapping cycle;one at the beginning stage of down stroke and the other at the beginning of upstroke, 2) maximum stress at the beginning of down stroke is greater than that at the beginning of upstroke, 3) maximum stress based on each material model is different. The composite and the Mooney-Rivlin nonlinear models produce much less stresses compared to the linear material model;and 4) the ratio of downstroke maximum stress and upstroke maximum stress varies with different material models. This research is helpful in answering why insect wings are so impeccable, thus providing a possibility of improving the design of flapping-wing aerial vehicles. 展开更多
关键词 flapping-Wing aerial vehicle MEMBRANE WING STRESS Analysis
下载PDF
仿绿头鸭扑翼飞行器的低速飞行气动特性仿真研究
6
作者 祁武超 高展通 田素梅 《无人系统技术》 2024年第2期39-50,共12页
针对仿绿头鸭扑翼飞行器,在刚性扑动基础上引入了展向弯折和弦向扭转两种运动方式,提出了4种不同扑动路径的描述方程,并对其低速飞行气动特性进行了研究。首先,根据绿头鸭翼翅外形选择NACA 6411翼型并对其弯度和长度进行修正,通过放样... 针对仿绿头鸭扑翼飞行器,在刚性扑动基础上引入了展向弯折和弦向扭转两种运动方式,提出了4种不同扑动路径的描述方程,并对其低速飞行气动特性进行了研究。首先,根据绿头鸭翼翅外形选择NACA 6411翼型并对其弯度和长度进行修正,通过放样创建扑翼几何构型。之后,基于动网格技术构建扑翼流场网格模型,包含刚性扑动、机翼弯折和机翼扭转等3种不同扑动形态。最后,使用Fluent进行瞬态仿真,基于压力耦合求解器和k-ω湍流模型得到不同扑动形态下飞行速度为2 m/s时的气动特性。结果表明,在低速飞行时,非对称扑动效应、展向弯折效应和弦向扭转效应均可起到增加升力、降低阻力的效果。所提出的3个扑动模型相对传统的对称刚性扑动模型分别能提高3.89%、14.78%、24.44%的升力,其中弯扭组合形式的扑动提供的推力能够抵消前飞时的空气阻力。 展开更多
关键词 扑翼飞行器 微小型飞行器 仿生 动网格 柔性扑动 气动特性
下载PDF
Co-simulation and Experimental Study for Wingspan of Flapping Wing Micro Aerial Vehicle 被引量:1
7
作者 彭松林 陈文元 张卫平 《Journal of Shanghai Jiaotong university(Science)》 EI 2009年第2期252-256,共5页
The 3D model of flapping wing mechanism and veins is constructed in 3D computer aided design (CAD) software UG.Then the co-simulation model is established by using multibody dynamics software ADAMS and MATLAB.The vali... The 3D model of flapping wing mechanism and veins is constructed in 3D computer aided design (CAD) software UG.Then the co-simulation model is established by using multibody dynamics software ADAMS and MATLAB.The validation of this co-simulation model is verified by comparing the simulation results with final experiments.The simulation results and experiments reveal that the relation between flapping frequency and driving voltage of motor is approximately linear under various wingspans.The variance of flapping frequency among different wingspans augments gradually with increasing voltage.Furthermore,the simulation results suggest that flapping frequency is sensitive to wingspan and decreases with increasing wingspan of veins,and the relation between flapping frequency and moment of inertia of veins is also approximately linear for various voltages. 展开更多
关键词 微型飞行器 翼展 实验 协同仿真 扑翼 三维计算机辅助设计 MATLAB 驱动电压
原文传递
Experimental Study on the Effect of Increased Downstroke Duration for an FWAV with Morphing-coupled Wing Flapping Configuration 被引量:1
8
作者 Ang Chen Bifeng Song +3 位作者 ZhiheWang Kang Liu Dong Xue Xiaojun Yang 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第1期192-208,共17页
This paper is based on a previously developed bio-inspired Flapping Wing Aerial Vehicle(FWAV),RoboFalcon,which can fly with a morphing-coupled flapping pattern.In this paper,a simple flapping stroke control system bas... This paper is based on a previously developed bio-inspired Flapping Wing Aerial Vehicle(FWAV),RoboFalcon,which can fly with a morphing-coupled flapping pattern.In this paper,a simple flapping stroke control system based on Hall effect sensors is designed and applied,which is capable of assigning different up-and down-stroke speeds for the RoboFalcon platform to achieve an adjustable downstroke ratio.The aerodynamic and power characteristics of the morphing-coupled flapping pattern and the conventional flapping pattern with varying downstroke ratios are measured through a wind tunnel experiment,and the corresponding aerodynamic models are developed and analyzed by the nonlinear least squares method.The relatively low power consumption of the slow-downstroke mode of this vehicle is verified through outdoor flight tests.The results of wind tunnel experiments and flight tests indicate that increased downstroke duration can improve aerodynamic and power performance for the RoboFalcon platform. 展开更多
关键词 flapping wing aerial vehicle(FWAV) Downstroke ratio Bio-inspired design Morphing-coupled flapping
原文传递
具有不确定性的扑翼微型飞行器抗干扰控制
9
作者 武晓晶 杨乾 +1 位作者 孟凡华 甄然 《计算机仿真》 2024年第6期52-57,254,共7页
研究了具有内部不确定性和外部干扰的扑翼微型飞行器的姿态和位置跟踪控制问题。利用神经网络对扑翼微型飞行器数学模型中复杂非线性和不确定性进行逼近估计,同时对于外部扰动,采用自适应技术来处理干扰对系统的影响。基于反步递推框架... 研究了具有内部不确定性和外部干扰的扑翼微型飞行器的姿态和位置跟踪控制问题。利用神经网络对扑翼微型飞行器数学模型中复杂非线性和不确定性进行逼近估计,同时对于外部扰动,采用自适应技术来处理干扰对系统的影响。基于反步递推框架,引入一阶滤波器,设计了动态表面控制器,克服了传统反步递推设计中“微分爆炸”的局限性。进一步,利用Lyapunov稳定理论证明了扑翼飞行器姿态和位置闭环系统的稳定性和所有状态变量的半全局一致最终有界性。结果表明,所提控制器不仅能够使稳态误差更好地收敛,而且还提高了收敛速度。仿真结果验证了所提控制方法能够有效地处理不确定性和外部干扰,且能够很好地跟踪期望轨迹。 展开更多
关键词 自动控制 扑翼微型飞行器 神经网络 自适应控制 反步控制
下载PDF
An experimental study of elastic properties of dragonfly-like flapping wings for use in biomimetic micro air vehicles(BMAVs) 被引量:5
10
作者 Praveena Nair Sivasankaran Thomas Arthur Ward +3 位作者 Erfan Salami Rubentheren Viyapuri Christopher J.Fearday Mohd Rafie Johan 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第2期726-737,共12页
This article studies the elastic properties of several biomimetic micro air vehicle(BMAV)wings that are based on a dragonfly wing.BMAVs are a new class of unmanned micro-sized air vehicles that mimic the flapping wi... This article studies the elastic properties of several biomimetic micro air vehicle(BMAV)wings that are based on a dragonfly wing.BMAVs are a new class of unmanned micro-sized air vehicles that mimic the flapping wing motion of flying biological organisms(e.g.,insects,birds,and bats).Three structurally identical wings were fabricated using different materials:acrylonitrile butadiene styrene(ABS),polylactic acid(PLA),and acrylic.Simplified wing frame structures were fabricated from these materials and then a nanocomposite film was adhered to them which mimics the membrane of an actual dragonfly.These wings were then attached to an electromagnetic actuator and passively flapped at frequencies of 10-250 Hz.A three-dimensional high frame rate imaging system was used to capture the flapping motions of these wings at a resolution of 320 pixels x 240 pixels and 35000 frames per second.The maximum bending angle,maximum wing tip deflection,maximum wing tip twist angle,and wing tip twist speed of each wing were measured and compared to each other and the actual dragonfly wing.The results show that the ABS wing has considerable flexibility in the chordwise direction,whereas the PLA and acrylic wings show better conformity to an actual dragonfly wing in the spanwise direction.Past studies have shown that the aerodynamic performance of a BMAV flapping wing is enhanced if its chordwise flexibility is increased and its spanwise flexibility is reduced.Therefore,the ABS wing(fabricated using a 3D printer) shows the most promising results for future applications. 展开更多
关键词 ABS ACRYLIC Biomimetic micro air vehicle flapping mechanism PLA Wing structure
原文传递
Design and experimental study of a new flapping wing rotor micro aerial vehicle 被引量:8
11
作者 Xin DONG Daochun LI +1 位作者 Jinwu XIANG Ziyu WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第12期3092-3099,共8页
A three-wing Flapping Wing Rotor Micro Aerial Vehicle(FWR-MAV)which can perform controlled flight is introduced and an experimental study on this vehicle is presented.A mechanically driven flapping rotary mechanism is... A three-wing Flapping Wing Rotor Micro Aerial Vehicle(FWR-MAV)which can perform controlled flight is introduced and an experimental study on this vehicle is presented.A mechanically driven flapping rotary mechanism is designed to drive the three flapping wings and generate lift,and control mechanisms are designed to control the pose of the FWR-MAV.A flight control board for attitude control with robust onboard attitude estimation and a control algorithm is also developed to perform stable hovering flight and forward flight.A series of flight tests was conducted,with hovering flight and forward flight tests performed to optimize the control parameters and assess the performance of the FWR-MAV.The hovering flight test shows the ability of the FWR-MAV to counteract the moment generated by rotary motion and maintain the attitude of the FWR-MAV in space;the experiment of forward flight shows that the FWR-MAV can track the desired attitude. 展开更多
关键词 Attitude estimation flapping wing rotor Flight control Flight tests micro aerial vehicle(MAV)
原文传递
Flapping wing micro-aerial-vehicle: Kinematics, membranes, and flapping mechanisms of ornithopter and insect flight 被引量:7
12
作者 Mohd Firdaus Bin Abas Azmin Shakrine Bin Mohd Rafie +1 位作者 Hamid Bin Yusoff Kamarul Arifin Bin Ahmad 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第5期1159-1177,共19页
The application of biomimetics in the development of unmanned-aerial-vehicles (UAV) has advanced to an exceptionally small scale of nano-aerial-vehicles (NAV), which has surpassed its immediate predecessor of micr... The application of biomimetics in the development of unmanned-aerial-vehicles (UAV) has advanced to an exceptionally small scale of nano-aerial-vehicles (NAV), which has surpassed its immediate predecessor of micro-aerial-vehicles (MAV), leaving a vast range of development possi- bilities that MAVs have to offer. Because of the prompt advancement into the NAV research devel- opment, the true potential and challenges presented by MAV development were never solved, understood, and truly uncovered, especially under the influence of transition and low Reynolds number flow characteristics. This paper reviews a part of previous MAV research developments which are deemed important of notification; kinematics, membranes, and flapping mechanisms ranges from small birds to big insects, which resides within the transition and low Reynolds number regimes. This paper also reviews the possibility of applying a piezoelectric transmission used to pro- duce NAV flapping wing motion and mounted on a MAV, replacing the conventional motorized flapping wing transmission. Findings suggest that limited work has been done for MAVs matching these criteria. The preferred research approach has seen bias towards numerical analysis as compared to experimental analysis. 展开更多
关键词 flapping wing kinematics INSECT Membrane wing micro-air-vehicle Ornithopter
原文传递
面向扑翼飞行机器人的飞行控制研究进展综述 被引量:1
13
作者 汪婷婷 何修宇 +2 位作者 邹尧 付强 贺威 《工程科学学报》 EI CSCD 北大核心 2023年第10期1630-1640,共11页
近十年来,研究人员从飞行生物的飞行机理着手分析,对扑翼飞行机器人的姿态控制、位置控制设计以及系统稳定性分析展开了深入研究,基于鲁棒控制、神经网络等技术,提出了诸多控制方法实现扑翼飞行机器人的自主飞行,其中,姿态控制通过自适... 近十年来,研究人员从飞行生物的飞行机理着手分析,对扑翼飞行机器人的姿态控制、位置控制设计以及系统稳定性分析展开了深入研究,基于鲁棒控制、神经网络等技术,提出了诸多控制方法实现扑翼飞行机器人的自主飞行,其中,姿态控制通过自适应等控制器并结合线性化方法来实现,位置控制则通过搭建层级架构的控制器等方法来完成,并通过设计扰动观测器等来处理系统的不确定性,以提高系统稳定性能.通过对相关研究工作进行总结,可以看出目前扑翼飞行机器人的飞行控制研究仍大多处于理论阶段,还需要进一步结合工程应用中的实际需求,推进扑翼飞行机器人的应用与推广.最后,探讨了扑翼飞行机器人飞行控制未来的研究方向. 展开更多
关键词 扑翼飞行机器人 生物飞行原理 自主飞行控制 姿态控制 人工智能
下载PDF
可悬停扑翼飞行器研究现状与关键技术 被引量:1
14
作者 张逸晨 赵佳欣 +3 位作者 韩昊奇 张卫平 崔峰 刘武 《无人系统技术》 2023年第3期1-18,共18页
可悬停扑翼飞行器模仿自然界定点滞空昆虫和鸟类的飞行特点,隐蔽性高、灵活机动、应用环境多样,具有突出的理论和实用价值,引起了世界范围的广泛关注。对可悬停扑翼飞行器的研究现状和发展方向进行了综合评述。首先总结了近年来最突出... 可悬停扑翼飞行器模仿自然界定点滞空昆虫和鸟类的飞行特点,隐蔽性高、灵活机动、应用环境多样,具有突出的理论和实用价值,引起了世界范围的广泛关注。对可悬停扑翼飞行器的研究现状和发展方向进行了综合评述。首先总结了近年来最突出的研究成果,按照微扑翼尺寸分类分别介绍MAV、NAV、PAV尺度下可悬停扑翼微飞行器的样机构型、动力系统、质量分配与飞行性能,统计了升力、翼展、质量、扑翼幅值等重要参数,介绍了电机、压电和电磁驱动扑翼微飞行器最具代表性的研究工作;然后针对目前飞行器研究运用的升力产生原理、飞行稳定性分析、功耗效率优化、续航能力等关键技术进行了分析和总结;最后讨论了扑翼飞行器亟待突破的技术难题和未来发展方向。 展开更多
关键词 仿生 悬停 微型飞行器 机器人 微加工技术 扑翼 飞行原理
下载PDF
微纳扑翼飞行器前沿动态综述与启示建议 被引量:1
15
作者 路翔 席翔 +2 位作者 吴宇列 吴学忠 肖定邦 《无人系统技术》 2023年第3期19-30,共12页
对微纳扑翼飞行器前沿动态发展进行了综合评述,并结合微纳飞行器当前发展态势,给出了微纳飞行器在未来发展的建设性意见。首先介绍了微纳扑翼飞行器的研究背景与基本概念,对微纳扑翼飞行方式的高升力产生机制和微纳扑翼飞行器的气动力... 对微纳扑翼飞行器前沿动态发展进行了综合评述,并结合微纳飞行器当前发展态势,给出了微纳飞行器在未来发展的建设性意见。首先介绍了微纳扑翼飞行器的研究背景与基本概念,对微纳扑翼飞行方式的高升力产生机制和微纳扑翼飞行器的气动力学进行了简单的分析;其次分别讨论了国内外相关机构研制的微纳扑翼飞行器不同的传动结构、加工工艺以及能源驱动方式的机理特点;再次对微纳扑翼飞行器在军事和民生两方面的应用潜力和发展态势挑战进行了概括;最后对微纳扑翼飞行器未来在结构创新设计、加工制造低成本智能化、能源驱动高效以及自主智能控制等需要重点研究的方向给出建议。综述表明,微纳扑翼飞行器的设计、加工、能源和驱动都处于发展初期阶段,还需继续深入展开研究,其在军民方面具有巨大应用潜力,未来将会继续掀起对微纳飞行器的研究热潮。 展开更多
关键词 微纳扑翼飞行器 气动力学分析 传动结构 加工工艺 能源驱动
下载PDF
突风扰动下的扑翼气动功耗和效率变化 被引量:1
16
作者 谷满仓 张艳来 +2 位作者 李晓龙 吴江浩 周超 《无人系统技术》 2023年第3期118-128,共11页
针对突风对扑翼飞行器气动性能的影响,开展了前向、侧向和竖直方向突风中扑翼的气动功耗和效率变化研究。首先基于简化的生物翅几何和运动模型,构建了不同方向、强度的突风模型。之后采用计算流体力学方法获得了突风方向及强度对扑翼气... 针对突风对扑翼飞行器气动性能的影响,开展了前向、侧向和竖直方向突风中扑翼的气动功耗和效率变化研究。首先基于简化的生物翅几何和运动模型,构建了不同方向、强度的突风模型。之后采用计算流体力学方法获得了突风方向及强度对扑翼气动力、功耗及效率的影响。最终结果表明,在所研究的突风强度范围内,前向突风引起的扑翼瞬时气动功耗增幅可达33%,但突风对扑翼平均气动功耗和效率的影响不大;从翼根到翼尖的侧向突风相比反方向的侧向突风所引起的气动功耗增加和气动效率降低更加明显;向下的突风尽管能够降低扑翼的气动功耗,但也同时降低了扑翼的气动效率。此外,突风对扑翼平均气动功耗的影响可以用与突风方向相同、大小等于突风平均速度的定常来流进行模拟,它们对扑翼平均气动功耗的影响是相近的。 展开更多
关键词 微型飞行器 扑翼 突风 升力 气动功耗
下载PDF
Aerodynamic performance of hovering micro revolving wings in ground and ceiling effects at low Reynolds number 被引量:1
17
作者 Jinjing HAO Yanlai ZHANG +2 位作者 Chao ZHOU Songtao CHU Jianghao WU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第1期152-165,共14页
Numerous investigations have been conducted to understand the wall effects on rotors.The purpose of this study is to further investigate the aerodynamic performance of revolving wings,especially when it is very close ... Numerous investigations have been conducted to understand the wall effects on rotors.The purpose of this study is to further investigate the aerodynamic performance of revolving wings,especially when it is very close to the ground and ceiling(i.e.,less than half the wingspan)at low Reynolds numbers.Hence,the ground and ceiling effect for hovering micro revolving wings at low Reynolds numbers are investigated by improving the theoretical models.The theoretical model for the ground effect is established based on the wall-jet assumption,and that for the ceiling effect is improved by considering the uneven spanwise distribution of induced velocity.These two models are validated by comparing the results of experiments and CFD simulations with the Lattice-Boltzmann Method(LBM).Both ground and ceiling effects are found helpful to enhance the thrust,especially with small wing-wall distances,by making a difference to the induced velocity and the pressure distribution.By comparing the thrust generation and aerodynamic efficiency between the ground and ceiling effects,the former is found more helpful to the thrust augmentation,and the latter is more beneficial for the aerodynamic efficiency promotion. 展开更多
关键词 Ceiling effect flapping wing Ground effect micro air vehicle Revolving wing
原文传递
基于ACP理论的微型扑翼飞行器的姿态控制
18
作者 金龙 李嘉昌 +2 位作者 常振强 卢经纬 程龙 《自动化学报》 EI CAS CSCD 北大核心 2023年第12期2532-2543,共12页
微型扑翼飞行器(Flapping wing micro aerial vehicle,FWMAV)因飞行效率高、质量轻、耗能低、机动性强等显著优点,在飞行器研究和应用中占据重要地位.目前,FWMAV姿态控制成为飞行器控制研究领域的研究热点.针对FWMAV姿态控制问题,基于... 微型扑翼飞行器(Flapping wing micro aerial vehicle,FWMAV)因飞行效率高、质量轻、耗能低、机动性强等显著优点,在飞行器研究和应用中占据重要地位.目前,FWMAV姿态控制成为飞行器控制研究领域的研究热点.针对FWMAV姿态控制问题,基于平行智能理论框架提出了一种FWMAV抗扰动姿态控制器.通过建立人工系统(Artificial systems,A)、计算实验(Computational experiments,C)、平行执行(Parallel execution,P)三个过程,得到一个能够有效解决FWMAV姿态控制过程中扰动问题的控制器,并通过理论分析和数值仿真证明了该控制器的有效性. 展开更多
关键词 微型扑翼飞行器 姿态控制 神经动力学 平行智能
下载PDF
Design and Aerodynamic Analysis of Dragonfly-like Flapping Wing Micro Air Vehicle 被引量:1
19
作者 Yanjuan Hu Weiwei Ru +1 位作者 Qiang Liu Zhanli Wang 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第2期343-354,共12页
Dragonflies have naturally high flying ability and flight maneuverability,making them more adaptable to harsh ecological environments.In this paper,a flapping wing bionic air vehicle with three-degrees-of-freedom is d... Dragonflies have naturally high flying ability and flight maneuverability,making them more adaptable to harsh ecological environments.In this paper,a flapping wing bionic air vehicle with three-degrees-of-freedom is designed and manufactured by simulating the flight mode of dragonfly.Firstly,the body structure of dragonfly was analyzed,and then the design scheme of flapping wing micro air vehicle was proposed based on the flight motion characteristics and musculoskeletal system of dragonfly.By optimizing the configuration and using Adams to do kinematic simulation,it is shown that the designed structure can make the wings move in an“8”shape trajectory,and the motion in three directions can maintain good consistency,with good dynamic performance.Based on CFD simulation method,we analyzed that the wing has the conditions to achieve flight with good aerodynamic performance at the incoming flow speed of 5 m s^(-1)and frequency of 4 Hz,and studied the effects of angle of attack and flutter frequency on the aerodynamic performance of the aircraft.Finally,the force measurement test of the aircraft prototype is carried out using a force balance and a small wind tunnel.The test results show that the prototype can provide the average lift of 3.62 N and the average thrust of 2.54 N,which are in good agreement with the simulation results. 展开更多
关键词 Dragonfy flapping wing micro air vehicle Three-degrees-of-freedom Aerodynamic performance
原文传递
Generation of Control Moments in an Insect-like Tailless Flapping-wing Micro Air Vehicle by Changing the Stroke-plane Angle 被引量:5
20
作者 Hoang Vu Phan Hoon Cheol Park 《Journal of Bionic Engineering》 SCIE EI CSCD 2016年第3期449-457,共9页
We propose a control moment generator to control the attitude of an insect-like tailless Flapping-wing Micro Air Vehicle (FW-MAV), where the flapping wings simultaneously produce the flight force and control moments... We propose a control moment generator to control the attitude of an insect-like tailless Flapping-wing Micro Air Vehicle (FW-MAV), where the flapping wings simultaneously produce the flight force and control moments. The generator tilts the stroke plane of each wing independently to direct the resultant aerodynamic force in the desired direction to ultimately generate pitch and yaw moments. A roll moment is produced by an additional mechanism that shifts the trailing edge, which changes the wing rotation angles of the two flapping wings and produces an asymmetric thrust. Images of the flapping wings are captured with a high-speed camera and clearly show that the FW-MAV can independently change the stroke planes of its two wings. The measured force and moment data prove that the control moment generator produces reasonable pitch and yaw moments by tilting the stroke plane and realizes a roll moment by shifting the position of the trailing edge at the wing root. 展开更多
关键词 insect-like flapping-wing micro Air vehicle (FW-MAV) control mechanism stroke plane beetle flight
原文传递
上一页 1 2 8 下一页 到第
使用帮助 返回顶部