Micro arc oxidation(MAO) and electrophoretic deposition(EPD) process are employed to fabricate a dense coating on magnesium alloy to protect it from corrosion in engineering application. The EPD film changes the dampi...Micro arc oxidation(MAO) and electrophoretic deposition(EPD) process are employed to fabricate a dense coating on magnesium alloy to protect it from corrosion in engineering application. The EPD film changes the damping characteristic of magnesium alloy, and both the MAO and EPD process change the bending stiffness of samples being treated. Damping loss factor(DLF) test and sound transmission experiments were carried out for AZ31 B magnesium alloy with coating fabricated by MAO and EPD processes. The results indicate that DLF is improved in frequency range from 0-850 Hz. Bending stiffness of the samples is improved with MAO and EPD treatment. As a result, the sound transmission loss(LST) is improved in the stiffness control stage of the sound transmission verse frequency curve. To the samples by electrophoresis process, the LST is improved in frequency range from 2500-3200 Hz, because the damping loss factor is improved with EPD process. The results are useful for the surface treatment to enhance the damping loss factor, LST and widespread application of magnesium alloy while improving the corrosion resistance.展开更多
By a novel technique-cathodic micro-arc electro-deposition (CMED), ZrO_2coatings were deposited on an FeCrAl alloy. Experimental results show that the necessary conditionsfor obtaining ZrO_2 coatings are to apply a pu...By a novel technique-cathodic micro-arc electro-deposition (CMED), ZrO_2coatings were deposited on an FeCrAl alloy. Experimental results show that the necessary conditionsfor obtaining ZrO_2 coatings are to apply a pulse peak voltage over a critical value and addmoderate amounts of ZrO_2 colloidal particles and Zr(NO_3)_4 in the aqueous solution. Theas-deposited coatings are porous because hydrogen, water, and other vapors are generated andreleased from the coatings to the solution during the spark reaction. The coatings containmonoclinic and tetragonal crystalline ZrO_2 with certain degree of amorphous structure. Theprocessing parameters and mechanism of CMED were discussed.展开更多
With advantages of high specific strength, low elastic module, good damping property et al., the magnesium alloys exhibit great potential applications in aerospace. But poor wear behavior results in limited use of mag...With advantages of high specific strength, low elastic module, good damping property et al., the magnesium alloys exhibit great potential applications in aerospace. But poor wear behavior results in limited use of magnesium alloy to static components. In this study, a 2 μm thick coating with 12 sub-layers of CrN and TiN is deposited alternately on the surface of magnesium alloy AZ91 by a novel method of arc-glow plasma depositing to improve its wear resistance. The composition and microstructure of the coating layer are analyzed by means of SEM, XRD and GDS. The friction coefficient is measured by ball on disc rubbing test, and the wear rates are also calculated. The results indicate that the friction coefficient is increased, but the wear rate is dropped sharply as compared with bare metal. The surface hardness is about HK0.01 1400.展开更多
DLC super-hard films have been deposited on the substrates of single crystalline Si, pure Ti and stainless steel 18-8 by a method of vacuum cathode arc deposition (VCAD). The composition, microstructure and micro-hard...DLC super-hard films have been deposited on the substrates of single crystalline Si, pure Ti and stainless steel 18-8 by a method of vacuum cathode arc deposition (VCAD). The composition, microstructure and micro-hardness of the films have been studied in this paper. The results indicate that hardness of the DLC films is different on the different substrates. Hardness of the films increases with decreasing in surface roughness of the films. The maximum value of micro-hardness belongs to the DLC films deposited under the hydrogen pressure of 0.35Pa and the negative bias of 100V.展开更多
采用参数化等间距点焊式沉积策略,以高能微弧火花数控化沉积工艺在45钢上制备出了Al Co Cr Fe Ni高熵合金多层涂层.通过SEM和XRD研究了Al Co Cr Fe Ni高熵合金涂层表面形貌及相组成.以层数为变量,研究了电极长度消耗规律和电极/工件质...采用参数化等间距点焊式沉积策略,以高能微弧火花数控化沉积工艺在45钢上制备出了Al Co Cr Fe Ni高熵合金多层涂层.通过SEM和XRD研究了Al Co Cr Fe Ni高熵合金涂层表面形貌及相组成.以层数为变量,研究了电极长度消耗规律和电极/工件质量过渡规律,并通过Bézier曲线拟合出电极长度消耗曲线、阳极质量损失曲线、和阴极质量增加曲线.电极长度消耗规律和质量过渡规律为实现多层连续不间断沉积和涂层显微结构的精确控制奠定基础.高能微弧火花数控化沉积工艺为功能涂层的制备提供了新方法.展开更多
基金Project(2011BAE22B05)supported by National Technology R&D Program in the 12th Five year Plan of ChinaProject(2011DFA50900)supported by the Canada-China-USA Collaborative Research&Development ProjectProject(51071121)supported by the National Natural Science Foundation of China
文摘Micro arc oxidation(MAO) and electrophoretic deposition(EPD) process are employed to fabricate a dense coating on magnesium alloy to protect it from corrosion in engineering application. The EPD film changes the damping characteristic of magnesium alloy, and both the MAO and EPD process change the bending stiffness of samples being treated. Damping loss factor(DLF) test and sound transmission experiments were carried out for AZ31 B magnesium alloy with coating fabricated by MAO and EPD processes. The results indicate that DLF is improved in frequency range from 0-850 Hz. Bending stiffness of the samples is improved with MAO and EPD treatment. As a result, the sound transmission loss(LST) is improved in the stiffness control stage of the sound transmission verse frequency curve. To the samples by electrophoresis process, the LST is improved in frequency range from 2500-3200 Hz, because the damping loss factor is improved with EPD process. The results are useful for the surface treatment to enhance the damping loss factor, LST and widespread application of magnesium alloy while improving the corrosion resistance.
基金This work was financially supported by the National Natural Science Foundation of China (No.59971009) Beijing Key Laboratory for Corrosion, Erosion and Surface Technology.
文摘By a novel technique-cathodic micro-arc electro-deposition (CMED), ZrO_2coatings were deposited on an FeCrAl alloy. Experimental results show that the necessary conditionsfor obtaining ZrO_2 coatings are to apply a pulse peak voltage over a critical value and addmoderate amounts of ZrO_2 colloidal particles and Zr(NO_3)_4 in the aqueous solution. Theas-deposited coatings are porous because hydrogen, water, and other vapors are generated andreleased from the coatings to the solution during the spark reaction. The coatings containmonoclinic and tetragonal crystalline ZrO_2 with certain degree of amorphous structure. Theprocessing parameters and mechanism of CMED were discussed.
基金Science foundation of Shanxi province, China (20041065)
文摘With advantages of high specific strength, low elastic module, good damping property et al., the magnesium alloys exhibit great potential applications in aerospace. But poor wear behavior results in limited use of magnesium alloy to static components. In this study, a 2 μm thick coating with 12 sub-layers of CrN and TiN is deposited alternately on the surface of magnesium alloy AZ91 by a novel method of arc-glow plasma depositing to improve its wear resistance. The composition and microstructure of the coating layer are analyzed by means of SEM, XRD and GDS. The friction coefficient is measured by ball on disc rubbing test, and the wear rates are also calculated. The results indicate that the friction coefficient is increased, but the wear rate is dropped sharply as compared with bare metal. The surface hardness is about HK0.01 1400.
基金This work was supported by the Natural Science Foundation of Guangdong Province(990548)the Special Project for PhD Subject of the Education Ministry of China(1999056121)+1 种基金the Key Project of the Guangdong Provincial Nano-Materials Science&Technology Program(2001A1060404)the Key Project of the Guangdong Provincial Science&Technology Program(2KM00407G).
文摘DLC super-hard films have been deposited on the substrates of single crystalline Si, pure Ti and stainless steel 18-8 by a method of vacuum cathode arc deposition (VCAD). The composition, microstructure and micro-hardness of the films have been studied in this paper. The results indicate that hardness of the DLC films is different on the different substrates. Hardness of the films increases with decreasing in surface roughness of the films. The maximum value of micro-hardness belongs to the DLC films deposited under the hydrogen pressure of 0.35Pa and the negative bias of 100V.
文摘采用参数化等间距点焊式沉积策略,以高能微弧火花数控化沉积工艺在45钢上制备出了Al Co Cr Fe Ni高熵合金多层涂层.通过SEM和XRD研究了Al Co Cr Fe Ni高熵合金涂层表面形貌及相组成.以层数为变量,研究了电极长度消耗规律和电极/工件质量过渡规律,并通过Bézier曲线拟合出电极长度消耗曲线、阳极质量损失曲线、和阴极质量增加曲线.电极长度消耗规律和质量过渡规律为实现多层连续不间断沉积和涂层显微结构的精确控制奠定基础.高能微弧火花数控化沉积工艺为功能涂层的制备提供了新方法.