In this research,a numerical study of mixed convection of non-Newtonian fluid and magnetic field effect along a vertical wavy surface was investigated.A simple coordinate transformation to transform wavy surface to a ...In this research,a numerical study of mixed convection of non-Newtonian fluid and magnetic field effect along a vertical wavy surface was investigated.A simple coordinate transformation to transform wavy surface to a flat surface is employed.A cubic spline collocation numerical method is employed to analyze transformed equations.The effect of various parameters such as Reynolds number,volume fraction 0-,Hartmann number,and amplitude of wave length was evaluated in improving the performance of a wavy microchannel.According to the presented results,the sinusoidal shape of the microchannel has a direct impact on heat transfer.By increasing the microchannel wave amplitude,the Nusselt number has risen.On the other hand,increasing the heat transfer in the higher wavelength ratio corrugated channel is seen as an effective method of increasing the heat transfer,especially at higher Reynolds numbers.The results showed that with increasing Hartmann numbers,the flow line near thewall becomesmore regular and,according to the temperature gradient created,theNusselt number growth.展开更多
A novel fabrication process for micro patterns with curvature was introduced. The curved structures were made by compensating rectangular micro structures with liquid photoresist layer. Because of the surface tension ...A novel fabrication process for micro patterns with curvature was introduced. The curved structures were made by compensating rectangular micro structures with liquid photoresist layer. Because of the surface tension of the liquid in micro scale, various shapes of meniscus can he made on the micro channels. The micro channels were made on the silicon suhstrate in advance, and then the liquid layer was coated on the micro channels. From the nature of liquid behavior, the curved patterns with smooth surface are obtained, which cannot be made easily with the conventional mechanical machining, as well as with the microfabrication processes, such as wet and dry etching. With this principle, it is expected that the smooth and curved surfaces can be made by simple processes and the results can be applied widely, such as optical patterns.展开更多
In practical applications of biochips and bio-sensors, electrokinetic mechanisms are commonly employed to manipulate and analyze the characteristics of single bio-molecules. To accurately and flexibly control the move...In practical applications of biochips and bio-sensors, electrokinetic mechanisms are commonly employed to manipulate and analyze the characteristics of single bio-molecules. To accurately and flexibly control the movement of single molecule within micro-/submicro-fluidic channels, the characteristics of current signals at the initial stage of the flow are systematically studied based on a three-electrode system. The current response of micro-/submicro-fluidic channels filled with different electrolyte solutions in non-continuous external electric field are investigated. It is found, there always exists a current reversal phenomenon, which is an inherent property of the current signals in micro/submicro-fluidics Each solution has an individual critical voltage under which the steady current value is equal to zero The interaction between the steady current and external applied voltage follows an exponential function. All these results can be attributed to the overpotentials of the electric double layer on the electrodes. These results are helpful for the design and fabrication of functional micro/nano-scale fluidic sensors and biochips.展开更多
The vortical property in a three dimensional cavity of micro-channel flow, which is very important, was investigated numerically. The results show that the rotation direction of vortex in the cavity depends on the dim...The vortical property in a three dimensional cavity of micro-channel flow, which is very important, was investigated numerically. The results show that the rotation direction of vortex in the cavity depends on the dimension and shape of the cavity as well as the viscosity of the fluid. With the dimension and shape of the cavity fixed, there exists a critical inlet velocity. When the inlet velocity is less than the critical value, the rotation direction of vortex in the cavity will change. The critical velocity is directly proportional to the vis- cosity of the fluid, and inversely proportional to square of the thickness, length and depth of cavity. For the ratio of length and depth of cavity equals to one, there is a critical dimensionless parameter Recr , when Recr' is less than Recr' , the rotation direction of vortex will change too. Recr' is equal to 11.8 approximately.展开更多
This research explores the transport of a Jeffrey fluid through a permeable slit of microchannel under the effect of a porous medium and constant reabsorption.Physical laws of fluid mechanics are used to study the flo...This research explores the transport of a Jeffrey fluid through a permeable slit of microchannel under the effect of a porous medium and constant reabsorption.Physical laws of fluid mechanics are used to study the flow in a cross-sectional area of a narrow slit which generates a highly nonlinear system of partial differential equation with nonhomogeneous boundary conditions.To solve the complex boundary value problem;a recursive(Langlois)approach is used and explicit expressions for velocity,pressure,stream function,flux,shear stress and fractional reabsorption are calculated.It is noticed that the flow rate at the centre line of slit and shear stress on the walls of slit decay due to the presence of porous medium and viscoelastic fluid parameters.It is also quantitatively observed that more pressure is required for the fluid flow when the slit is filled with a porous medium and reabsorption on the walls is constant.The mathematical results of the present research have significant importance in the field of biofluid mechanics and medical industry,therefore the application of a diseased rat kidney is also included in this research:and reabsorption velocities in the case of a diseased and a healthy rat kidney are calculated with the effects of a porous medium and constant re-absorption.展开更多
Micro channel of T2 copper were molding through electronic-magnetic forming experiments.Laser scanning confocal microscope and contourgraph were used to measure the section profile and sheet thickness.The effects of v...Micro channel of T2 copper were molding through electronic-magnetic forming experiments.Laser scanning confocal microscope and contourgraph were used to measure the section profile and sheet thickness.The effects of voltage,shape of channel and discharge cycles on laws of metal flow were studied.Results showed that forming depth of micro channel and thinning of sheet thickness increased as the increasing of the voltage.Mold-filling capacity of components formed by two molds with different structures had been increased when the voltage was increased.Mold with semicircle structure facilitate the material flow and the forming depth of parts was relative large.Semicircle structure was better than taper structure in mold-filling capacity.A number of small pulse discharges can improve the forming quality and deformation,but local thinning in sheet metal leads to non-uniform distribution of thickness.展开更多
In this study, we present speed and displacement measurements of micro-fluid in a hollow-core optical fiber, where an optical interference signal is created by two guided beams reflected at a fixed facet and a moving ...In this study, we present speed and displacement measurements of micro-fluid in a hollow-core optical fiber, where an optical interference signal is created by two guided beams reflected at a fixed facet and a moving fluid end. By counting the number of intensity oscillations of the signal, the movement of the fluid end is successfully traced with high accuracy. Furthermore, we could detect the change in curvature diameters of the fluid end depending on the flow direction by monitoring the visibility of the interference signal.展开更多
The paper is devoted to the development of an efficient deterministic framework for modelling of three-dimensional rarefied gas flows on the basis of the numerical solution of the Boltzmann kinetic equation with the m...The paper is devoted to the development of an efficient deterministic framework for modelling of three-dimensional rarefied gas flows on the basis of the numerical solution of the Boltzmann kinetic equation with the model collision integrals.The framework consists of a high-order accurate implicit advection scheme on arbitrary unstructuredmeshes,the conservative procedure for the calculation of themodel collision integral and efficient implementation on parallel machines.The main application area of the suggested methods is micro-scale flows.Performance of the proposed approach is demonstrated on a rarefied gas flow through the finite-length circular pipe.The results show good accuracy of the proposed algorithm across all flow regimes and its high efficiency and excellent parallel scalability for up to 512 cores.展开更多
文摘In this research,a numerical study of mixed convection of non-Newtonian fluid and magnetic field effect along a vertical wavy surface was investigated.A simple coordinate transformation to transform wavy surface to a flat surface is employed.A cubic spline collocation numerical method is employed to analyze transformed equations.The effect of various parameters such as Reynolds number,volume fraction 0-,Hartmann number,and amplitude of wave length was evaluated in improving the performance of a wavy microchannel.According to the presented results,the sinusoidal shape of the microchannel has a direct impact on heat transfer.By increasing the microchannel wave amplitude,the Nusselt number has risen.On the other hand,increasing the heat transfer in the higher wavelength ratio corrugated channel is seen as an effective method of increasing the heat transfer,especially at higher Reynolds numbers.The results showed that with increasing Hartmann numbers,the flow line near thewall becomesmore regular and,according to the temperature gradient created,theNusselt number growth.
基金the support of Ministry of Knowledge and Economy through Strategic Technology Development ProjectConversing Research Center Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology
文摘A novel fabrication process for micro patterns with curvature was introduced. The curved structures were made by compensating rectangular micro structures with liquid photoresist layer. Because of the surface tension of the liquid in micro scale, various shapes of meniscus can he made on the micro channels. The micro channels were made on the silicon suhstrate in advance, and then the liquid layer was coated on the micro channels. From the nature of liquid behavior, the curved patterns with smooth surface are obtained, which cannot be made easily with the conventional mechanical machining, as well as with the microfabrication processes, such as wet and dry etching. With this principle, it is expected that the smooth and curved surfaces can be made by simple processes and the results can be applied widely, such as optical patterns.
基金supported by the National Natural Science Foundation of China(Grant Nos.61378083 and 11672229)the International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2011DFA12220)+2 种基金the Major Research Plan of the National Natural Science Foundation of China(Grant No.91123030)the Natural Science Foundation of Shaanxi Province of China(Grant Nos.2010JS110,14JS106,14JS107,and 2013SZS03-Z01)the Natural Science Basic Research Program of Shaanxi Province-Major Basic Research Project(Grant No.2016ZDJC-15)
文摘In practical applications of biochips and bio-sensors, electrokinetic mechanisms are commonly employed to manipulate and analyze the characteristics of single bio-molecules. To accurately and flexibly control the movement of single molecule within micro-/submicro-fluidic channels, the characteristics of current signals at the initial stage of the flow are systematically studied based on a three-electrode system. The current response of micro-/submicro-fluidic channels filled with different electrolyte solutions in non-continuous external electric field are investigated. It is found, there always exists a current reversal phenomenon, which is an inherent property of the current signals in micro/submicro-fluidics Each solution has an individual critical voltage under which the steady current value is equal to zero The interaction between the steady current and external applied voltage follows an exponential function. All these results can be attributed to the overpotentials of the electric double layer on the electrodes. These results are helpful for the design and fabrication of functional micro/nano-scale fluidic sensors and biochips.
基金Project supported by the Natural National Science Foundation of China (Grant . No :20299030)
文摘The vortical property in a three dimensional cavity of micro-channel flow, which is very important, was investigated numerically. The results show that the rotation direction of vortex in the cavity depends on the dimension and shape of the cavity as well as the viscosity of the fluid. With the dimension and shape of the cavity fixed, there exists a critical inlet velocity. When the inlet velocity is less than the critical value, the rotation direction of vortex in the cavity will change. The critical velocity is directly proportional to the vis- cosity of the fluid, and inversely proportional to square of the thickness, length and depth of cavity. For the ratio of length and depth of cavity equals to one, there is a critical dimensionless parameter Recr , when Recr' is less than Recr' , the rotation direction of vortex will change too. Recr' is equal to 11.8 approximately.
文摘This research explores the transport of a Jeffrey fluid through a permeable slit of microchannel under the effect of a porous medium and constant reabsorption.Physical laws of fluid mechanics are used to study the flow in a cross-sectional area of a narrow slit which generates a highly nonlinear system of partial differential equation with nonhomogeneous boundary conditions.To solve the complex boundary value problem;a recursive(Langlois)approach is used and explicit expressions for velocity,pressure,stream function,flux,shear stress and fractional reabsorption are calculated.It is noticed that the flow rate at the centre line of slit and shear stress on the walls of slit decay due to the presence of porous medium and viscoelastic fluid parameters.It is also quantitatively observed that more pressure is required for the fluid flow when the slit is filled with a porous medium and reabsorption on the walls is constant.The mathematical results of the present research have significant importance in the field of biofluid mechanics and medical industry,therefore the application of a diseased rat kidney is also included in this research:and reabsorption velocities in the case of a diseased and a healthy rat kidney are calculated with the effects of a porous medium and constant re-absorption.
基金Item Sponsored by the National Natural Science Foundation of China[No.5083500250805035]
文摘Micro channel of T2 copper were molding through electronic-magnetic forming experiments.Laser scanning confocal microscope and contourgraph were used to measure the section profile and sheet thickness.The effects of voltage,shape of channel and discharge cycles on laws of metal flow were studied.Results showed that forming depth of micro channel and thinning of sheet thickness increased as the increasing of the voltage.Mold-filling capacity of components formed by two molds with different structures had been increased when the voltage was increased.Mold with semicircle structure facilitate the material flow and the forming depth of parts was relative large.Semicircle structure was better than taper structure in mold-filling capacity.A number of small pulse discharges can improve the forming quality and deformation,but local thinning in sheet metal leads to non-uniform distribution of thickness.
文摘In this study, we present speed and displacement measurements of micro-fluid in a hollow-core optical fiber, where an optical interference signal is created by two guided beams reflected at a fixed facet and a moving fluid end. By counting the number of intensity oscillations of the signal, the movement of the fluid end is successfully traced with high accuracy. Furthermore, we could detect the change in curvature diameters of the fluid end depending on the flow direction by monitoring the visibility of the interference signal.
基金This work was supported by the Russian Foundation for Basic Research,project no.10-01-00721-a.The author would also like to thank Dr.Les Oswald from the IT department of Cranfield University for his help with running large-scale parallel simulations on university’s HPC facility Astral and anonymous reviewers whose critical comments helped to improve the paper.
文摘The paper is devoted to the development of an efficient deterministic framework for modelling of three-dimensional rarefied gas flows on the basis of the numerical solution of the Boltzmann kinetic equation with the model collision integrals.The framework consists of a high-order accurate implicit advection scheme on arbitrary unstructuredmeshes,the conservative procedure for the calculation of themodel collision integral and efficient implementation on parallel machines.The main application area of the suggested methods is micro-scale flows.Performance of the proposed approach is demonstrated on a rarefied gas flow through the finite-length circular pipe.The results show good accuracy of the proposed algorithm across all flow regimes and its high efficiency and excellent parallel scalability for up to 512 cores.