A novel micro heat pipe array was used in solar panel cooling. Both of air-cooling and water-cooling conditions under nature convection condition were investigated in this paper. Compared with the ordinary solar panel...A novel micro heat pipe array was used in solar panel cooling. Both of air-cooling and water-cooling conditions under nature convection condition were investigated in this paper. Compared with the ordinary solar panel, the maximum difference of the photoelectric conversion efficiency is 2.6%, the temperature reduces maximally by 4.7℃, the output power increases maximally by 8.4% for the solar panel with heat pipe using air-cooling, when the daily radiation value is 26.3 MJ. Compared with the solar panel with heat pipe using air-cooling, the maximum difference of the photoelectric conversion efficiency is 3%, the temperature reduces maximally by 8℃, the output power increases maximally by 13.9% for the solar panel with heat pipe using water-cooling, when the daily radiation value is 21.9 MJ.展开更多
文摘A novel micro heat pipe array was used in solar panel cooling. Both of air-cooling and water-cooling conditions under nature convection condition were investigated in this paper. Compared with the ordinary solar panel, the maximum difference of the photoelectric conversion efficiency is 2.6%, the temperature reduces maximally by 4.7℃, the output power increases maximally by 8.4% for the solar panel with heat pipe using air-cooling, when the daily radiation value is 26.3 MJ. Compared with the solar panel with heat pipe using air-cooling, the maximum difference of the photoelectric conversion efficiency is 3%, the temperature reduces maximally by 8℃, the output power increases maximally by 13.9% for the solar panel with heat pipe using water-cooling, when the daily radiation value is 21.9 MJ.
文摘为提高相变蓄热装置的性能,基于平板热管技术设计了一套相变蓄热装置,将熔点58℃的工业石蜡作为该蓄热装置的蓄热材料,对平板微热管阵列在蓄/放热过程的均温性能、蓄热装置内部石蜡温度变化以及蓄热装置的蓄/放热效率进行实验分析,同时对不同供/取热流体温度和流量的实验条件下蓄热装置蓄/放热特性进行研究.结果表明:平板微热管阵列在蓄/放热过程中性能稳定,蓄热装置蓄/放热效果良好;在供/取热流体流量为2.0 L/min,供热流体温度为80℃,取热流体温度为20℃的实验条件下,计算得到该蓄热装置平均蓄热功率、放热功率分别为662、764 W.