This paper is aimed to investigate the effect of packing material on plasma characteristic from the viewpoint of charge transfer process.Both the charge accumulation and release processes in the dielectric barrier dis...This paper is aimed to investigate the effect of packing material on plasma characteristic from the viewpoint of charge transfer process.Both the charge accumulation and release processes in the dielectric barrier discharge reactor and packed-bed reactor were investigated by measuring voltage and current waveforms and taking ICCD images.The packing material was ZrO2 pellets and the reactors were driven by a parameterized nanosecond pulse source.The quantity of transferred charges in the dielectric barrier discharge reactor was enhanced when decreasing pulse rise time or increasing pulse width(within 150 ns),but reduced when the gas gap was packed with pellets.The quantity of accumulated charges in the primary discharge was larger than the quantity of released charges in the secondary discharges in the dielectric barrier discharge reactor,but they were almost equal in the packed-bed reactor.It indicates that the discharge behavior has been changed from the view of charge transfer process once the gas gap was packed with pellets,and the ICCD images confirmed it.展开更多
Rectangular wave current control of the electrochemical reduction of nitrobenzene im-proves the selectivity for p-aminophenol(PAP) compared to direct current(d.c.) control at thesame average current density in a flow-...Rectangular wave current control of the electrochemical reduction of nitrobenzene im-proves the selectivity for p-aminophenol(PAP) compared to direct current(d.c.) control at thesame average current density in a flow-by packed-bed reactor.Optimal increase in PAP selectivitycan be obtained at about a frequency of 50Hz and a duty cycle of 0.2.A mathematical model isset up to incorporate the effects of mass transfer,hydrogen evolution and double layer charging,and is solved using the Duhamel’s superposition principle and the modified Crank-Nicolson methodwith the upwind scheme.The conventional d.c.control cases are also calculated for comparison.Calculations can be applied to predict the reaction results under periodic current and d.c.control,but both display the same trends compared to experimental data.展开更多
In this paper,three dielectric barrier discharge(DBD)configurations,which were plain DBD with no packing,DBD with packed pure quartz fibers and DBD with packed loaded quartz fibers,were employed to investigate the eff...In this paper,three dielectric barrier discharge(DBD)configurations,which were plain DBD with no packing,DBD with packed pure quartz fibers and DBD with packed loaded quartz fibers,were employed to investigate the effect and catalytic mechanism of catalyst materials in a packed-bed ozone generator.From the experimental results,it was clear that the DBD configuration with packed pure fibers and packed loaded fibers promotes ozone generation.For the packed-bed reactor,ozone concentration and ozone yield were enhanced by an increase of electric field in the discharge gap with the packed-bed effect.Meanwhile,the enhancement of ozone concentration and yield for the DBD reactor packed by loaded fibers with silica nanoparticles was due to the catalysis of silica nanoparticles on the fiber surface.The adsorption of silica nanoparticles on the fiber surface can prolong the retention time of active species and enhance surface reactions.展开更多
A three-dimensional geometric model of the oxidative coupling of methane (OCM) packed-bed reactor loaded with Na2WO4-Mn/SiO2 partic- ulate catalyst was set up, and an improved Stansch kinetic model was established t...A three-dimensional geometric model of the oxidative coupling of methane (OCM) packed-bed reactor loaded with Na2WO4-Mn/SiO2 partic- ulate catalyst was set up, and an improved Stansch kinetic model was established to calculate the OCM reactions using the computational fluid dynamics method and Fluent software. The simulation conditions were completely the same with the experimental conditions that the volume velocity of the reactant was 80 mL/min under standard state, the ratio of CH4/O2 was 3, the temperature and pressure were 800 ℃ and 1 atm, respectively. The contour of the characteristics parameters in the catalyst bed was analyzed, such as the species mass fractions, temperature, the heat flux on side wall surface, pressure, fluid density and velocity. The results showed that the calculated values matched well with the experimental values on the conversion of CH4 and the selectivity to products (C2H6, C2H4, CO2, CO) in the reactor outlet with an error range of 4-2%. The mass fractions of CH4 and O2 decreased from 0.6 and 0.4 in the catalyst bed inlet to 0.436 and 0.142 in the outlet, where the mass fractions of C2H6, C2H4, CO and CO2 were 0.035, 0.061, 0.032 and 0.106, respectively. Due to the existence of laminar boundary layer, the contours of each component bent upwards in the vicinity of the boundary layer. This OCM reaction was volume increase reaction and the total moles of products were greater than those of reactants. The flow field in the catalyst bed maintained constant temperature and pressure. The fluid density decreased gradually from 2.28 kg/m3 in the inlet of the catalyst bed to 2.22 kg/m3 in the outlet of the catalyst bed, while the velocity increased from 0.108 m/s to 0.115 m/s.展开更多
We reported a coaxial,micro-dielectric barrier discharge(micro-DBD)reactor and a conventional DBD reactor for the direct conversion of methane into higher hydrocarbons at atmospheric pressure.The effects of input powe...We reported a coaxial,micro-dielectric barrier discharge(micro-DBD)reactor and a conventional DBD reactor for the direct conversion of methane into higher hydrocarbons at atmospheric pressure.The effects of input power,residence time,discharge gap and external electrode length were investigated for methane conversion and product selectivity.We found the conversion of methane in a micro-DBD reactor was higher than that in a conventional DBD reactor.And at an input power of 25.0 W,the conversion of methane and the total C2+C3 selectivity reached 25.10% and 80.27%,respectively,with a micro-DBD reactor of 0.4 mm discharge gap.Finally,a nonlinear multiple regression model was used to study the correlations between both methane conversion and product selectivity and various system variables.The calculated data were obtained using SPSS 12.0 software.The regression analysis illustrated the correlations between system variables and both methane conversion and product selectivity.展开更多
In dentistry, a wide range of materials is available for restorative treatment;a typical product of such restorative materials mainly consists of radically polymerizable monomer(s) and inorganic filler(s) (for added p...In dentistry, a wide range of materials is available for restorative treatment;a typical product of such restorative materials mainly consists of radically polymerizable monomer(s) and inorganic filler(s) (for added physical strength), as well as a surface modifier (e.g. silane coupling agent) for improved affinity between monomer and filler. It is favorable to use an optimal surface modifier depending on the respective restorative materials. However, commercially available surface modifiers, which are synthesized by the ton, are not always suited for what is required for properties of the many different dental restorative materials. As a potential solution to such a problem, we focused on the latest technology, “micro flow reactors” that enabled an on-demand low-volume synthesis of many types of surface modifiers. Using micro reaction fields of such flow reactors, we synthesized a novel long-chain silane coupling agent. Compared to the control system synthesized using a conventional reaction flask, the novel system enabled significant reduction in reaction time without inducing any major side reactions. A dental composite resin that was treated with the novel coupling agent exhibited higher toughness, suggesting that such a silane coupling agent was an effective surface modifier.展开更多
Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attenti...Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attentions in recent years. This work aimed to further improve the catalytic performance of nickel-based catalyst by the introduction of additives, i.e., MgO and FeO, prepared by impregnation method on the micro-channels made of metal-ceramic complex substrate. The prepared catalysts were tested in the same micro-channel reactor by switching the catalyst plates. The results showed that among the tested catalysts Ni-Mg catalyst had the highest activity, especially under harsh conditions, i.e., at high space velocity and/or low reaction temperature. Moreover, the catalyst activity and selectivity were stable during the 12 h on stream test even when the ratio of steam to carbon (SIC) was as low as 1.0. The addition of MgO promoted the active Ni species to have a good dispersion on the substrate, leading to a better catalytic performance for SMR reaction.展开更多
Micro-mixing is an important mechanism, which works simultaneously with macro-mixing in chemical reactors in process industries, for achieving the best selectivity with respect to desired products. In about a half cen...Micro-mixing is an important mechanism, which works simultaneously with macro-mixing in chemical reactors in process industries, for achieving the best selectivity with respect to desired products. In about a half century, a huge amount of data and knowledge has been accumulated from theoretical and experimental studies on micromixing. Nevertheless, those results are mostly composites of simplified theoretical and empirical models, and the true nature of interactions of flow inhomogeneity and micro-mixing with chemical reaction has not been fully unveiled. This article reviews the progress in micro-mixing study in chemical reactors to date. A few important topics related to the nature, experimental evaluation, and numerical simulation of micro-mixing are addressed.Some suggestions are given hopefully to motivate more chemical engineers to devote their efforts to better understanding of micro-mixing in chemical reactors.展开更多
TiO2 nanoparticles were synthesized by using micro-reactors. The shape and size of the nanoparticles produced from the original micro-reactors and the five times recycled micro-reactors mother liquor were investigate...TiO2 nanoparticles were synthesized by using micro-reactors. The shape and size of the nanoparticles produced from the original micro-reactors and the five times recycled micro-reactors mother liquor were investigated on transmission electron microscopy (TEM) by using the original sample, freeze prepared sample, and dyeing treated sample, respectively. UV-VIS spectrometry was used to study the growth process of TiO2 nanoparticles in main reactors. The results showed that micro-reactors with nanometer magnitude had spherical or oval structures, and could restore to their original structure after they were destroyed. The products prepared in the original micro-reactors were similar to that in the micro-reactors recycled for many times, suggesting that the micro-reactors had memory function.展开更多
The performance of sequencing biofilm batch reactor( SBBR) under micro-aerobic condition for aniline-contaminated wastewater treatment was investigated in this study. Dissolved oxygen( DO) and aniline concentrations w...The performance of sequencing biofilm batch reactor( SBBR) under micro-aerobic condition for aniline-contaminated wastewater treatment was investigated in this study. Dissolved oxygen( DO) and aniline concentrations were selected as the operating variables to analyze,model,and optimize the process. In order to analyze the process,5 dependent parameters,chemical oxygen demand( COD),aniline,ammonium,total nitrogen( TN),and total phosphorous( TP) removal as the process responses were studied. From the results, increase in DO concentration could promote the removal of COD,aniline,ammonium,and TN,while increase in aniline concentration has a slightly negative impact on the removal of pollutants. The optimum DO concentration was found to be 0. 4-0. 5 mg /L. The removal efficiencies for COD,aniline,ammonium,and TN at the optimum point( DO concentration0. 5 mg /L,aniline concentration 11 mg /L) were 95. 84%,100%,75. 72%,and 45. 39%,respectively. The oxidative deamination was the main degradation method for aniline under micro-aerobic condition. Simultaneously nitrification-denitrification( SND)process performed under micro-aerobic condition and about 20%-40% nitrogen was removed by SND.展开更多
The research on gas-liquid multiphase reactions using micro reactors is becoming increasingly widespread, given their excellent mass transfer performance. Establishing an accurate and reliable method to measure the ga...The research on gas-liquid multiphase reactions using micro reactors is becoming increasingly widespread, given their excellent mass transfer performance. Establishing an accurate and reliable method to measure the gas-liquid mass transfer performance of micro reactors is crucial for evaluating and optimizing the design of micro reactor structure. In this paper, the physical absorption method of aqueous solution-CO_(2) and the chemical absorption method of sodium carbonate solution-CO_(2) were proposed. By analyzing the chemical reaction equilibrium during the absorption process, the relationship between the mass transfer of CO_(2) and the solubility of hydroxide ions in the solution was established, and the total gas-liquid mass transfer coefficient was immediately obtained by measuring the p H value. The corresponding testing platform and process have been established based on the characteristics of the proposed method to ensure fast and accurate measurement. In addition, the chemical absorption method takes into account temperature factors that were not previously considered. The volumetric mass transfer coefficient measured by these two methods is in the same range as those measured by other methods using the same microchannel structure in previous literature. The methods have the advantages of low equipment cost, faster measurement speed, and simpler procedures, which can facilitate its wide application to the evaluation of the mass transfer performance and hence can guide the structure optimization of microchannel reactors.展开更多
基金supported by the National Science Fund for Distinguished Young Scholars(No.51925703)National Natural Science Foundation of China(Nos.51637010,51707186 and 51807190)。
文摘This paper is aimed to investigate the effect of packing material on plasma characteristic from the viewpoint of charge transfer process.Both the charge accumulation and release processes in the dielectric barrier discharge reactor and packed-bed reactor were investigated by measuring voltage and current waveforms and taking ICCD images.The packing material was ZrO2 pellets and the reactors were driven by a parameterized nanosecond pulse source.The quantity of transferred charges in the dielectric barrier discharge reactor was enhanced when decreasing pulse rise time or increasing pulse width(within 150 ns),but reduced when the gas gap was packed with pellets.The quantity of accumulated charges in the primary discharge was larger than the quantity of released charges in the secondary discharges in the dielectric barrier discharge reactor,but they were almost equal in the packed-bed reactor.It indicates that the discharge behavior has been changed from the view of charge transfer process once the gas gap was packed with pellets,and the ICCD images confirmed it.
基金Supported by the State Key Laboratory of Chemical Engineering,National Nature Science Foundation of China,and China Petrochemical Corporation.
文摘Rectangular wave current control of the electrochemical reduction of nitrobenzene im-proves the selectivity for p-aminophenol(PAP) compared to direct current(d.c.) control at thesame average current density in a flow-by packed-bed reactor.Optimal increase in PAP selectivitycan be obtained at about a frequency of 50Hz and a duty cycle of 0.2.A mathematical model isset up to incorporate the effects of mass transfer,hydrogen evolution and double layer charging,and is solved using the Duhamel’s superposition principle and the modified Crank-Nicolson methodwith the upwind scheme.The conventional d.c.control cases are also calculated for comparison.Calculations can be applied to predict the reaction results under periodic current and d.c.control,but both display the same trends compared to experimental data.
基金supported by National Natural Science Foundation of China(No.51867018)Jiangxi Province’s Major Subject Academic and Technical Leader Training ProgramLeading Talent Project(No.20204BCJ22016)the Innovation Fund Designed for Graduate Students of Jiangxi Province,China(No.YC2020-S118)。
文摘In this paper,three dielectric barrier discharge(DBD)configurations,which were plain DBD with no packing,DBD with packed pure quartz fibers and DBD with packed loaded quartz fibers,were employed to investigate the effect and catalytic mechanism of catalyst materials in a packed-bed ozone generator.From the experimental results,it was clear that the DBD configuration with packed pure fibers and packed loaded fibers promotes ozone generation.For the packed-bed reactor,ozone concentration and ozone yield were enhanced by an increase of electric field in the discharge gap with the packed-bed effect.Meanwhile,the enhancement of ozone concentration and yield for the DBD reactor packed by loaded fibers with silica nanoparticles was due to the catalysis of silica nanoparticles on the fiber surface.The adsorption of silica nanoparticles on the fiber surface can prolong the retention time of active species and enhance surface reactions.
文摘A three-dimensional geometric model of the oxidative coupling of methane (OCM) packed-bed reactor loaded with Na2WO4-Mn/SiO2 partic- ulate catalyst was set up, and an improved Stansch kinetic model was established to calculate the OCM reactions using the computational fluid dynamics method and Fluent software. The simulation conditions were completely the same with the experimental conditions that the volume velocity of the reactant was 80 mL/min under standard state, the ratio of CH4/O2 was 3, the temperature and pressure were 800 ℃ and 1 atm, respectively. The contour of the characteristics parameters in the catalyst bed was analyzed, such as the species mass fractions, temperature, the heat flux on side wall surface, pressure, fluid density and velocity. The results showed that the calculated values matched well with the experimental values on the conversion of CH4 and the selectivity to products (C2H6, C2H4, CO2, CO) in the reactor outlet with an error range of 4-2%. The mass fractions of CH4 and O2 decreased from 0.6 and 0.4 in the catalyst bed inlet to 0.436 and 0.142 in the outlet, where the mass fractions of C2H6, C2H4, CO and CO2 were 0.035, 0.061, 0.032 and 0.106, respectively. Due to the existence of laminar boundary layer, the contours of each component bent upwards in the vicinity of the boundary layer. This OCM reaction was volume increase reaction and the total moles of products were greater than those of reactants. The flow field in the catalyst bed maintained constant temperature and pressure. The fluid density decreased gradually from 2.28 kg/m3 in the inlet of the catalyst bed to 2.22 kg/m3 in the outlet of the catalyst bed, while the velocity increased from 0.108 m/s to 0.115 m/s.
基金supported by the National Natural Science Foundation of China (NSFC) under the grant of No.21176175 and No.20606023
文摘We reported a coaxial,micro-dielectric barrier discharge(micro-DBD)reactor and a conventional DBD reactor for the direct conversion of methane into higher hydrocarbons at atmospheric pressure.The effects of input power,residence time,discharge gap and external electrode length were investigated for methane conversion and product selectivity.We found the conversion of methane in a micro-DBD reactor was higher than that in a conventional DBD reactor.And at an input power of 25.0 W,the conversion of methane and the total C2+C3 selectivity reached 25.10% and 80.27%,respectively,with a micro-DBD reactor of 0.4 mm discharge gap.Finally,a nonlinear multiple regression model was used to study the correlations between both methane conversion and product selectivity and various system variables.The calculated data were obtained using SPSS 12.0 software.The regression analysis illustrated the correlations between system variables and both methane conversion and product selectivity.
文摘In dentistry, a wide range of materials is available for restorative treatment;a typical product of such restorative materials mainly consists of radically polymerizable monomer(s) and inorganic filler(s) (for added physical strength), as well as a surface modifier (e.g. silane coupling agent) for improved affinity between monomer and filler. It is favorable to use an optimal surface modifier depending on the respective restorative materials. However, commercially available surface modifiers, which are synthesized by the ton, are not always suited for what is required for properties of the many different dental restorative materials. As a potential solution to such a problem, we focused on the latest technology, “micro flow reactors” that enabled an on-demand low-volume synthesis of many types of surface modifiers. Using micro reaction fields of such flow reactors, we synthesized a novel long-chain silane coupling agent. Compared to the control system synthesized using a conventional reaction flask, the novel system enabled significant reduction in reaction time without inducing any major side reactions. A dental composite resin that was treated with the novel coupling agent exhibited higher toughness, suggesting that such a silane coupling agent was an effective surface modifier.
基金supported by the National Natural Science Foundation of China(No.21176137) and Petro China
文摘Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attentions in recent years. This work aimed to further improve the catalytic performance of nickel-based catalyst by the introduction of additives, i.e., MgO and FeO, prepared by impregnation method on the micro-channels made of metal-ceramic complex substrate. The prepared catalysts were tested in the same micro-channel reactor by switching the catalyst plates. The results showed that among the tested catalysts Ni-Mg catalyst had the highest activity, especially under harsh conditions, i.e., at high space velocity and/or low reaction temperature. Moreover, the catalyst activity and selectivity were stable during the 12 h on stream test even when the ratio of steam to carbon (SIC) was as low as 1.0. The addition of MgO promoted the active Ni species to have a good dispersion on the substrate, leading to a better catalytic performance for SMR reaction.
基金Supported by the National Natural Science Foundation of China(21376243,91434126)National Key Research and Development Program(2016YFB0301702)+1 种基金the State Key Development Program for Basic Research of China(2012CB224806)Jiangsu National Synergetic Innovation Center for Advanced Materials
文摘Micro-mixing is an important mechanism, which works simultaneously with macro-mixing in chemical reactors in process industries, for achieving the best selectivity with respect to desired products. In about a half century, a huge amount of data and knowledge has been accumulated from theoretical and experimental studies on micromixing. Nevertheless, those results are mostly composites of simplified theoretical and empirical models, and the true nature of interactions of flow inhomogeneity and micro-mixing with chemical reaction has not been fully unveiled. This article reviews the progress in micro-mixing study in chemical reactors to date. A few important topics related to the nature, experimental evaluation, and numerical simulation of micro-mixing are addressed.Some suggestions are given hopefully to motivate more chemical engineers to devote their efforts to better understanding of micro-mixing in chemical reactors.
文摘TiO2 nanoparticles were synthesized by using micro-reactors. The shape and size of the nanoparticles produced from the original micro-reactors and the five times recycled micro-reactors mother liquor were investigated on transmission electron microscopy (TEM) by using the original sample, freeze prepared sample, and dyeing treated sample, respectively. UV-VIS spectrometry was used to study the growth process of TiO2 nanoparticles in main reactors. The results showed that micro-reactors with nanometer magnitude had spherical or oval structures, and could restore to their original structure after they were destroyed. The products prepared in the original micro-reactors were similar to that in the micro-reactors recycled for many times, suggesting that the micro-reactors had memory function.
基金National Major Water Project of China(No.2013ZX07201007)State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology,China(No 3012DX06)
文摘The performance of sequencing biofilm batch reactor( SBBR) under micro-aerobic condition for aniline-contaminated wastewater treatment was investigated in this study. Dissolved oxygen( DO) and aniline concentrations were selected as the operating variables to analyze,model,and optimize the process. In order to analyze the process,5 dependent parameters,chemical oxygen demand( COD),aniline,ammonium,total nitrogen( TN),and total phosphorous( TP) removal as the process responses were studied. From the results, increase in DO concentration could promote the removal of COD,aniline,ammonium,and TN,while increase in aniline concentration has a slightly negative impact on the removal of pollutants. The optimum DO concentration was found to be 0. 4-0. 5 mg /L. The removal efficiencies for COD,aniline,ammonium,and TN at the optimum point( DO concentration0. 5 mg /L,aniline concentration 11 mg /L) were 95. 84%,100%,75. 72%,and 45. 39%,respectively. The oxidative deamination was the main degradation method for aniline under micro-aerobic condition. Simultaneously nitrification-denitrification( SND)process performed under micro-aerobic condition and about 20%-40% nitrogen was removed by SND.
文摘The research on gas-liquid multiphase reactions using micro reactors is becoming increasingly widespread, given their excellent mass transfer performance. Establishing an accurate and reliable method to measure the gas-liquid mass transfer performance of micro reactors is crucial for evaluating and optimizing the design of micro reactor structure. In this paper, the physical absorption method of aqueous solution-CO_(2) and the chemical absorption method of sodium carbonate solution-CO_(2) were proposed. By analyzing the chemical reaction equilibrium during the absorption process, the relationship between the mass transfer of CO_(2) and the solubility of hydroxide ions in the solution was established, and the total gas-liquid mass transfer coefficient was immediately obtained by measuring the p H value. The corresponding testing platform and process have been established based on the characteristics of the proposed method to ensure fast and accurate measurement. In addition, the chemical absorption method takes into account temperature factors that were not previously considered. The volumetric mass transfer coefficient measured by these two methods is in the same range as those measured by other methods using the same microchannel structure in previous literature. The methods have the advantages of low equipment cost, faster measurement speed, and simpler procedures, which can facilitate its wide application to the evaluation of the mass transfer performance and hence can guide the structure optimization of microchannel reactors.