One of the most significant considerations in the design of a heat sink is thermal management due to increasing thermal flux and miniature in size.These heat sinks utilize plate or pin fins depending upon the required...One of the most significant considerations in the design of a heat sink is thermal management due to increasing thermal flux and miniature in size.These heat sinks utilize plate or pin fins depending upon the required heat dissipation rate.They are designed to optimize overall performance.Elliptical pin fin heat sinks enhance heat transfer rates and reduce the pumping power.In this study,the Firefly Algorithm is implemented to optimize heat sinks with elliptical pin-fins.The pin-fins are arranged in an inline fashion.The nature-inspired metaheuristic algorithm performs powerfully and efficiently in solving numerical global optimization problems.Based on mass,energy,and entropy balance,three models are developed for thermal resistance,hydraulic resistance,and entropy generation rate in the heat sink.The major axis is used as the characteristic length,and the maximum velocity is used as the reference velocity.The entropy generation rate comprises the combined effect of thermal resistance and pressure drop.The total EGR is minimized by utilizing the firefly algorithm.The optimization model utilizes analytical/empirical correlations for the heat transfer coefficients and friction factors.It is shown that both thermal resistance and pressure drop can be simultaneously optimized using this algorithm.It is demonstrated that the performance of FFA is much better than PPA.展开更多
In order to comply with the recent demand for downsizing of the electric equipment, the minia- turization and the improvement in heat transfer performance of a heat sink under natural air-cooling are increasingly requ...In order to comply with the recent demand for downsizing of the electric equipment, the minia- turization and the improvement in heat transfer performance of a heat sink under natural air-cooling are increasingly required. This paper describes the experimental and numerical investigations of heat sinks with miniature/micro pins and the effect of the pin size, pin height and the number of pins on heat transfer characteristics of heat sinks. Five types of basic heat sink models are investigated in this study. The whole heat transfer area of heat sinks having the different pin size, pin height and the number of pins respectively is kept constant. From a series of experiments and numerical analyses, it has been clarified that the heat sink temperature rises with increase in the number of pins. That is, the heat sink with miniaturized fine pins showed almost no effect on the heat transfer enhancement. This is because of the choking phenomenon occurred in the air space among the pin fins. Reflecting these results, it is confirmed that the heat transfer coefficient reduces with miniaturization of pins. Concerning the effects of the heat transfer area on the heat sink performance, almost the same tendency has been observed in other three series of large surface area, that is, higher pin height. Furthermore as a result of studying non-dimensional convection heat transfer performance, it was found that the relation between the Nusselt number (Nu) and the Rayleight number (Ra) is given by Nu = 0.16 Ra0.52.展开更多
Double layer micro-channel heat sink(DLMCHS) has been widely used in various electronic devices; however, the existence of the nonuniform thermal strain distribution in actual operation has adverse effect on the overa...Double layer micro-channel heat sink(DLMCHS) has been widely used in various electronic devices; however, the existence of the nonuniform thermal strain distribution in actual operation has adverse effect on the overall stability. In this paper, two optimized designs of DLMCHS with cutting baffles on top and bottom layers are presented based on the traditional DLMCHS. The heat transfer and thermal stress performance are numerically analyzed and compared with the traditional DLMCHS. The results indicate that cutting baffles of micro-channels remarkably improves heat transfer and thermal stress performance. The optimized design with cutting baffles on the bottom layer decreases thermal strain but deteriorates heat transfer performance. The model with cutting baffles on the top layer has better combined thermal strain and heat transfer performance, which reduces thermal strain by about 1.5 times and enhances heat transfer by about 26.5%. For the design with cutting baffles on the top board, adding metal foam in the inlet collector can decrease the total minimum thermal strain by 51.4% and maximum temperature by 1.4 K, and increase the Nusselt number by 15%. These results indicate that DLMCHS with cutting baffles on the top layer has great potential for thermal managements on electronic devices with high power density.展开更多
基金This research is supported by the Deanship of Scientific Research/Saudi Electronic University[Research Number:7638-HS-2019-1-1-S].Initials of authors who received the grant:N.N.HamadnehW.A.Khan.
文摘One of the most significant considerations in the design of a heat sink is thermal management due to increasing thermal flux and miniature in size.These heat sinks utilize plate or pin fins depending upon the required heat dissipation rate.They are designed to optimize overall performance.Elliptical pin fin heat sinks enhance heat transfer rates and reduce the pumping power.In this study,the Firefly Algorithm is implemented to optimize heat sinks with elliptical pin-fins.The pin-fins are arranged in an inline fashion.The nature-inspired metaheuristic algorithm performs powerfully and efficiently in solving numerical global optimization problems.Based on mass,energy,and entropy balance,three models are developed for thermal resistance,hydraulic resistance,and entropy generation rate in the heat sink.The major axis is used as the characteristic length,and the maximum velocity is used as the reference velocity.The entropy generation rate comprises the combined effect of thermal resistance and pressure drop.The total EGR is minimized by utilizing the firefly algorithm.The optimization model utilizes analytical/empirical correlations for the heat transfer coefficients and friction factors.It is shown that both thermal resistance and pressure drop can be simultaneously optimized using this algorithm.It is demonstrated that the performance of FFA is much better than PPA.
文摘In order to comply with the recent demand for downsizing of the electric equipment, the minia- turization and the improvement in heat transfer performance of a heat sink under natural air-cooling are increasingly required. This paper describes the experimental and numerical investigations of heat sinks with miniature/micro pins and the effect of the pin size, pin height and the number of pins on heat transfer characteristics of heat sinks. Five types of basic heat sink models are investigated in this study. The whole heat transfer area of heat sinks having the different pin size, pin height and the number of pins respectively is kept constant. From a series of experiments and numerical analyses, it has been clarified that the heat sink temperature rises with increase in the number of pins. That is, the heat sink with miniaturized fine pins showed almost no effect on the heat transfer enhancement. This is because of the choking phenomenon occurred in the air space among the pin fins. Reflecting these results, it is confirmed that the heat transfer coefficient reduces with miniaturization of pins. Concerning the effects of the heat transfer area on the heat sink performance, almost the same tendency has been observed in other three series of large surface area, that is, higher pin height. Furthermore as a result of studying non-dimensional convection heat transfer performance, it was found that the relation between the Nusselt number (Nu) and the Rayleight number (Ra) is given by Nu = 0.16 Ra0.52.
基金supported in part by the National Natural Science Foundation of China (No. 51676208)the Fundamental Research Funds for the Central Universities (No. 18CX07012A)
文摘Double layer micro-channel heat sink(DLMCHS) has been widely used in various electronic devices; however, the existence of the nonuniform thermal strain distribution in actual operation has adverse effect on the overall stability. In this paper, two optimized designs of DLMCHS with cutting baffles on top and bottom layers are presented based on the traditional DLMCHS. The heat transfer and thermal stress performance are numerically analyzed and compared with the traditional DLMCHS. The results indicate that cutting baffles of micro-channels remarkably improves heat transfer and thermal stress performance. The optimized design with cutting baffles on the bottom layer decreases thermal strain but deteriorates heat transfer performance. The model with cutting baffles on the top layer has better combined thermal strain and heat transfer performance, which reduces thermal strain by about 1.5 times and enhances heat transfer by about 26.5%. For the design with cutting baffles on the top board, adding metal foam in the inlet collector can decrease the total minimum thermal strain by 51.4% and maximum temperature by 1.4 K, and increase the Nusselt number by 15%. These results indicate that DLMCHS with cutting baffles on the top layer has great potential for thermal managements on electronic devices with high power density.