Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ...Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ability of surface coating technology under technical and economic considerations to meet the increased demands for heavy tribological applications of aluminum alloys. Microplasma oxidation (MPO) technology has recently been studied as a novel and effective means to provide thick and hard ceramic coating with improved properties such as excellent load-bearing and wear resistance properties on aluminum alloys. The present work covers the evaluation of the performances of current single and duplex coatings combining MPO, physical vapor deposition (PVD), and plasma assisted chemical vapor deposition (PACVD) coatings on aluminum alloys. It suggests that the MPO coating is a promising candidate for design engineers to apply aluminum alloys to heavy load-bearing applications. The prospective future for the research on MPO coatings is introduced as well.展开更多
In this study, compounded surface modification technology-high current pulsed electron beam (HCPEB) + micro-plasma oxidation (MPO) was applied to treat ZK60 Mg alloys. The characteristics of the microstructure of...In this study, compounded surface modification technology-high current pulsed electron beam (HCPEB) + micro-plasma oxidation (MPO) was applied to treat ZK60 Mg alloys. The characteristics of the microstructure of ZK60 Mg alloy after single MPO and HCPEB+MPO compounded treatment were investigated by SEM. The results showed that the density of the ceramic layer of HCPEB+MPO-treated ZK60 Mg alloy was improved and defects were reduced compared to that under MPO treatment alone. Surface modified layer of ZK60 Mg alloys treated by HCPEB+MPO was divided into three zones, namely the top loose ceramic zone, middle compact zone and inside HCPEB-induced melted zone. Corrosion resistance of ZK60 Mg alloy before and after the compounded surface modification was measured in a solution of 3.5% NaCl by potentiodynamic polarization curves. It was found that the corrosion current density of ZK60 Mg alloys could be reduced by about three orders of magnitude, from 311μA/cm^2 of the original sample to 0.2μA/cm^2 of the HCPEB+MPO-treated sample. This indicates the great application potential of the HCPEB+MPO compounded surface modification technology in improving the corrosion resistance of ZK60 Mg alloys in the future.展开更多
Micro plasma oxidation(MPO) has recently been investigated as a novel, rapid and effective means to provide modified surfaces with improved properties of load bearing and wear resistance on light alloys particularly a...Micro plasma oxidation(MPO) has recently been investigated as a novel, rapid and effective means to provide modified surfaces with improved properties of load bearing and wear resistance on light alloys particularly aluminum alloys. MPO is a multifactor-controlled process, these factors must be controlled to produce high quality coatings. The main research emphasis in MPO coating development over the past years seems to be the attainment of higher hardness levels and thick coatings. The porosity of MPO coating is the most complex phenomenon affecting the distribution, levels and the measurements of the hardness; and it is controlled by suitable selection of important parameters such as the electrical conditions. Ceramics coatings were synthesized on Al substrate by MPO to examine the effects of adding a cathodic phase alternated with anodic-cathodic current on the porosity and hardness characteristics of coatings by X-ray diffraction(XRD), scanning electron microscopy(SEM), and microhardness tester. The coatings produced by the combined mode are more dense and less porous than that by the anodic-cathodic mode. (Microhardness) test shows that the coatings produced by the combined mode exhibit both the highest hardness, and less reduction percentage in hardness with increasing the coatings thickness. These improvements become more significant for the polished and thicker coatings.展开更多
Micro-plasma oxidation (MPO) technique is a new technique by which compound ceramic coating can be grown in situ on Al, Ti, Mg and many other valve-metals. Compound ceramic coatings on Ti-6Al-4V alloy were prepared fo...Micro-plasma oxidation (MPO) technique is a new technique by which compound ceramic coating can be grown in situ on Al, Ti, Mg and many other valve-metals. Compound ceramic coatings on Ti-6Al-4V alloy were prepared for different time by pulsed bi-polar MPO in NaAlO2 solution. The phase composition, morphology and the element distribution of the coatings were studied by XRD, SEM and JEOL SUPERPROBE 733 electric probe, respectively. Electrochemical Impedance Spectra (EIS) of the coatings were measured to study the structure character of the coatings. Through the proper EIS interpreting software, the "equivalent circuit" of the coatings was established, and the fitting values of equivalent element were calculated. The coating is mainly composed of Al2TiO5, a-A12O3 and rutile TiO2. The content of Ti element in the coating is less than that of substrate; its distribution is relatively uniform, and Ti in the outer layer is less than that in the inner layer. The content of Al in the coating is more than that of substrate, and its distribution is not even: Al in the middle part is more than that on both sides of the coating; And the EIS analysis has illustrated the double-layer structure of the coatings, and the outside layer is loosen and the inner layer compact; with the increase of the oxidizing time, the surface roughness of the coatings, and the porosity of the outer layer of the coating are increased while the compactness of the inner layer of the coatings are improved.展开更多
Compound ceramics coatings on the Ti-6Al-4V alloy were prepared by the direct current micro-plasma oxidation (MPO) in NaAlO2 solution. The composition and morphology of the coatings were studied with the X-ray diffr...Compound ceramics coatings on the Ti-6Al-4V alloy were prepared by the direct current micro-plasma oxidation (MPO) in NaAlO2 solution. The composition and morphology of the coatings were studied with the X-ray diffraction (XRD) and the scanning electron microscopy (SEM), respectively. Inductively coupled plasma atomic emission spectrometer technique was used to analyze the solution features of Ti-6Al-4V alloy in the process of preparation. The results reveal that Al2TiO5 forms in the coatings at the initial stages of MPO reaction, and its content changes rapidly with the reaction continuing: after 20 min, the ceramics coatings are composed of α-Al2O3, 7-Al2O3 and Al2TiO5, but after 40 min, its main composition is of α-Al2O3. The content of Ti in the solution will increase when the MPO time extends, and as will Al in the anode area until, after 30 min, it reaches the maximum and keeps constant from then on. Both substrata of Ti and Al in the electrolyte join the MPO reaction at the initial stage, where the formation of Al2TiO5 happens; but as the MPO reaction prolongs, more and more Al in the electrolyte will take part in the reaction, leading to the appearance of a large amount ofAl2O3.展开更多
In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)proce...In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)process on Ti6Al4V alloy in NaF electrolyte.The influence of NaF concentration(0.15-0.50 mol/L)on the PEO process,microstructure,phase composition,corrosion resistance and thickness of the coatings was investigated using scanning/transmission electron microscopy,energy dispersive spectroscopy,atomic force microscopy,X-ray diffractometer,and potentiodynamic polarization.The results demonstrated that Ti6Al4V alloy had low PEO voltage(less than 200 V)in NaF electrolyte,which decreased further as the NaF concentration increased.A micro/nano-structured coating with 10-15μm pits and 200-800 nm pores was formed in NaF electrolyte;the morphology was different from the typical pancake structure obtained with other electrolytes.The coating formed in NaF electrolyte had low surface roughness and was thin(<4μm).The NaF concentration had a small effect on the phase transition from metastable anatase phase to stable rutile phase,but greatly affected the corrosion resistance.In general,as the NaF concentration increased,the surface roughness,phase(anatase and rutile)contents,corrosion resistance,and thickness of the coating first increased and then decreased,reaching the maximum values at 0.25 mol/L NaF.展开更多
Magnesium(Mg)and its alloys have become a hot research topic in various industries owing to the specific physical and chemical properties.However,high corrosion rate is considered the key lifetime-limiting.Plasma elec...Magnesium(Mg)and its alloys have become a hot research topic in various industries owing to the specific physical and chemical properties.However,high corrosion rate is considered the key lifetime-limiting.Plasma electrolytic oxidation(PEO)method is a simple strategy to deposit an oxide layer on the surface of light metals such as magnesium alloys,to control corrosion rate and promote some other properties,depending on their performances.Nevertheless,their features including their micropore size,distribution,and interconnectivity,and microcracks have not been improved to an acceptable level to support long-term performances of the magnesium-based substrates.Studies have introduced micro/nano-enabled approaches to enhance various properties of PEO coatings such as corrosion resistance,tribological properties,self-healing ability,bioactivity,biocompatibility,antibacterial properties,or catalytic performances.These strategies consist of incorporating of micro and nanoparticles into the PEO layers to produce multi-functional surfaces or the formation of multi-layered coatings to cover the defects of PEO coatings.In this perspective,the present paper aims to overview various nano/micro-enabled strategies to promote the properties of PEO coatings on magnesium alloys.The main focus is given to the functional changes that occurred in response to the incorporation of various types of nano/micro-structures into the PEO coatings on magnesium alloys.展开更多
Ceramic coatings were prepared on Ti-6Al-4V alloy in NaAlO2 solution by micro-plasma oxidation (MPO). The salt spray tests of the coated samples and the substrates were carded out in a salt spray test machine. The p...Ceramic coatings were prepared on Ti-6Al-4V alloy in NaAlO2 solution by micro-plasma oxidation (MPO). The salt spray tests of the coated samples and the substrates were carded out in a salt spray test machine. The phase composition and surface morphology of the coatings were investigated by XRD and SEAM. Severe corrosion occurred on the substrate surface, while there were no obvious corrosion phenomena on the coated samples. The coatings were composed of Al2TiO5 and a little α-Al2O3 and mille TiO2, and the salt spray test did not change the composition of the coatings. The weight loss rate of the coatings decreased with increasing MPO time because of the increase in density and thickness of the coatings. The surface morphology of the coatings was influenced by salt spray corrosion test. Among the coated samples, the coating prepared for 2 h has the best corrosion resistance under salt spray test.展开更多
The feasibility of the formation of a liquid plasma catalysis system through micro arc oxidation(MAO) under AC power with titanium-aluminum alloy electrodes was investigated.In the decolorization of organic dyeing w...The feasibility of the formation of a liquid plasma catalysis system through micro arc oxidation(MAO) under AC power with titanium-aluminum alloy electrodes was investigated.In the decolorization of organic dyeing wastewater simulated with Rhodamine B,Ti-Al alloy electrodes were superior over Ti electrodes and Al electrodes.The optimal molar percentage of Ti in alloy electrodes was 70%and the optimal decolorization rate was up to 88.9%if the additive suitable for Al was added into the solution to be treated.The decolorization rates were the same in the case of the alloy-alloy electrodes and alloy-Al electrodes.The proportion of the effects of plasma,TiO2 catalyzer during MAO and H2O2 after MAO in decolorization has been obtained.With the catalysis of TiO2 formed on the electrodes,the reaction rate was improved by a maximum of 95%and the decolorization rate was improved by a maximum of 71.6%.Based on the spectral analysis,the plasma catalysis mechanism has been studied.展开更多
Micro arc oxidation of wire arc sprayed Al-Mg6, Al-Si12 and Pure Al coatings on low carbon steel has been performed. The coatings have been analyzed using optic microscope, scanning electron microscopy, X-ray diffract...Micro arc oxidation of wire arc sprayed Al-Mg6, Al-Si12 and Pure Al coatings on low carbon steel has been performed. The coatings have been analyzed using optic microscope, scanning electron microscopy, X-ray diffraction and surface roughness tester. At the same time, voltage and current regimes are investigated during the process. Then after MAO process, uniform Al2O3 ceramic coatings have been deposited on surface of Al-Mg6, Al-Si12 and Al coated steel. The ceramic coatings are mainly composed of Al2O3 phase. The compound coatings show high hardness and significant improvement of corrosion resistance property.展开更多
The alumina ceramic coatings were prepared on aluminum alloy using micro-plasma oxidation. The structure and morphologies of ceramic coatings were studied by X-ray diffraction (XRD) and scanning electron microscope (S...The alumina ceramic coatings were prepared on aluminum alloy using micro-plasma oxidation. The structure and morphologies of ceramic coatings were studied by X-ray diffraction (XRD) and scanning electron microscope (SEM), and then its formation process was investigated. The results of XRD reveal that with increasing oxidation time the content of decreases, and in which the content of al reaction occurs between the aluminum from the substrate and the oxygen and other ions from the electrolyte. The reaction products then are propelled away from the inner-wall of the discharging channels. Finally, these products agglomerate in the inner-wall of the discharging channels and on the surface near the discharging channels to produce the ceramic coatings. The change of ceramic coatings thickness with increasing oxidation time divides into two stages, and the final thickness is formed in first stage. With increasing current density the final thickness of ceramic coatings increases.展开更多
文摘Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ability of surface coating technology under technical and economic considerations to meet the increased demands for heavy tribological applications of aluminum alloys. Microplasma oxidation (MPO) technology has recently been studied as a novel and effective means to provide thick and hard ceramic coating with improved properties such as excellent load-bearing and wear resistance properties on aluminum alloys. The present work covers the evaluation of the performances of current single and duplex coatings combining MPO, physical vapor deposition (PVD), and plasma assisted chemical vapor deposition (PACVD) coatings on aluminum alloys. It suggests that the MPO coating is a promising candidate for design engineers to apply aluminum alloys to heavy load-bearing applications. The prospective future for the research on MPO coatings is introduced as well.
基金supported by Liaoning BaiQianWan Talents Program of China (No. 2008921028)Doctoral Fund of Ministry of Education of China (No. 200801451082)
文摘In this study, compounded surface modification technology-high current pulsed electron beam (HCPEB) + micro-plasma oxidation (MPO) was applied to treat ZK60 Mg alloys. The characteristics of the microstructure of ZK60 Mg alloy after single MPO and HCPEB+MPO compounded treatment were investigated by SEM. The results showed that the density of the ceramic layer of HCPEB+MPO-treated ZK60 Mg alloy was improved and defects were reduced compared to that under MPO treatment alone. Surface modified layer of ZK60 Mg alloys treated by HCPEB+MPO was divided into three zones, namely the top loose ceramic zone, middle compact zone and inside HCPEB-induced melted zone. Corrosion resistance of ZK60 Mg alloy before and after the compounded surface modification was measured in a solution of 3.5% NaCl by potentiodynamic polarization curves. It was found that the corrosion current density of ZK60 Mg alloys could be reduced by about three orders of magnitude, from 311μA/cm^2 of the original sample to 0.2μA/cm^2 of the HCPEB+MPO-treated sample. This indicates the great application potential of the HCPEB+MPO compounded surface modification technology in improving the corrosion resistance of ZK60 Mg alloys in the future.
文摘Micro plasma oxidation(MPO) has recently been investigated as a novel, rapid and effective means to provide modified surfaces with improved properties of load bearing and wear resistance on light alloys particularly aluminum alloys. MPO is a multifactor-controlled process, these factors must be controlled to produce high quality coatings. The main research emphasis in MPO coating development over the past years seems to be the attainment of higher hardness levels and thick coatings. The porosity of MPO coating is the most complex phenomenon affecting the distribution, levels and the measurements of the hardness; and it is controlled by suitable selection of important parameters such as the electrical conditions. Ceramics coatings were synthesized on Al substrate by MPO to examine the effects of adding a cathodic phase alternated with anodic-cathodic current on the porosity and hardness characteristics of coatings by X-ray diffraction(XRD), scanning electron microscopy(SEM), and microhardness tester. The coatings produced by the combined mode are more dense and less porous than that by the anodic-cathodic mode. (Microhardness) test shows that the coatings produced by the combined mode exhibit both the highest hardness, and less reduction percentage in hardness with increasing the coatings thickness. These improvements become more significant for the polished and thicker coatings.
文摘Micro-plasma oxidation (MPO) technique is a new technique by which compound ceramic coating can be grown in situ on Al, Ti, Mg and many other valve-metals. Compound ceramic coatings on Ti-6Al-4V alloy were prepared for different time by pulsed bi-polar MPO in NaAlO2 solution. The phase composition, morphology and the element distribution of the coatings were studied by XRD, SEM and JEOL SUPERPROBE 733 electric probe, respectively. Electrochemical Impedance Spectra (EIS) of the coatings were measured to study the structure character of the coatings. Through the proper EIS interpreting software, the "equivalent circuit" of the coatings was established, and the fitting values of equivalent element were calculated. The coating is mainly composed of Al2TiO5, a-A12O3 and rutile TiO2. The content of Ti element in the coating is less than that of substrate; its distribution is relatively uniform, and Ti in the outer layer is less than that in the inner layer. The content of Al in the coating is more than that of substrate, and its distribution is not even: Al in the middle part is more than that on both sides of the coating; And the EIS analysis has illustrated the double-layer structure of the coatings, and the outside layer is loosen and the inner layer compact; with the increase of the oxidizing time, the surface roughness of the coatings, and the porosity of the outer layer of the coating are increased while the compactness of the inner layer of the coatings are improved.
基金National Natural Science Foundation of China (50171026)
文摘Compound ceramics coatings on the Ti-6Al-4V alloy were prepared by the direct current micro-plasma oxidation (MPO) in NaAlO2 solution. The composition and morphology of the coatings were studied with the X-ray diffraction (XRD) and the scanning electron microscopy (SEM), respectively. Inductively coupled plasma atomic emission spectrometer technique was used to analyze the solution features of Ti-6Al-4V alloy in the process of preparation. The results reveal that Al2TiO5 forms in the coatings at the initial stages of MPO reaction, and its content changes rapidly with the reaction continuing: after 20 min, the ceramics coatings are composed of α-Al2O3, 7-Al2O3 and Al2TiO5, but after 40 min, its main composition is of α-Al2O3. The content of Ti in the solution will increase when the MPO time extends, and as will Al in the anode area until, after 30 min, it reaches the maximum and keeps constant from then on. Both substrata of Ti and Al in the electrolyte join the MPO reaction at the initial stage, where the formation of Al2TiO5 happens; but as the MPO reaction prolongs, more and more Al in the electrolyte will take part in the reaction, leading to the appearance of a large amount ofAl2O3.
文摘In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)process on Ti6Al4V alloy in NaF electrolyte.The influence of NaF concentration(0.15-0.50 mol/L)on the PEO process,microstructure,phase composition,corrosion resistance and thickness of the coatings was investigated using scanning/transmission electron microscopy,energy dispersive spectroscopy,atomic force microscopy,X-ray diffractometer,and potentiodynamic polarization.The results demonstrated that Ti6Al4V alloy had low PEO voltage(less than 200 V)in NaF electrolyte,which decreased further as the NaF concentration increased.A micro/nano-structured coating with 10-15μm pits and 200-800 nm pores was formed in NaF electrolyte;the morphology was different from the typical pancake structure obtained with other electrolytes.The coating formed in NaF electrolyte had low surface roughness and was thin(<4μm).The NaF concentration had a small effect on the phase transition from metastable anatase phase to stable rutile phase,but greatly affected the corrosion resistance.In general,as the NaF concentration increased,the surface roughness,phase(anatase and rutile)contents,corrosion resistance,and thickness of the coating first increased and then decreased,reaching the maximum values at 0.25 mol/L NaF.
文摘Magnesium(Mg)and its alloys have become a hot research topic in various industries owing to the specific physical and chemical properties.However,high corrosion rate is considered the key lifetime-limiting.Plasma electrolytic oxidation(PEO)method is a simple strategy to deposit an oxide layer on the surface of light metals such as magnesium alloys,to control corrosion rate and promote some other properties,depending on their performances.Nevertheless,their features including their micropore size,distribution,and interconnectivity,and microcracks have not been improved to an acceptable level to support long-term performances of the magnesium-based substrates.Studies have introduced micro/nano-enabled approaches to enhance various properties of PEO coatings such as corrosion resistance,tribological properties,self-healing ability,bioactivity,biocompatibility,antibacterial properties,or catalytic performances.These strategies consist of incorporating of micro and nanoparticles into the PEO layers to produce multi-functional surfaces or the formation of multi-layered coatings to cover the defects of PEO coatings.In this perspective,the present paper aims to overview various nano/micro-enabled strategies to promote the properties of PEO coatings on magnesium alloys.The main focus is given to the functional changes that occurred in response to the incorporation of various types of nano/micro-structures into the PEO coatings on magnesium alloys.
基金the National Natural Science Foundation of China (No. 50171026)the Natu-ral Science Foundation of Heilongjiang Province, China (No. E2007-36).
文摘Ceramic coatings were prepared on Ti-6Al-4V alloy in NaAlO2 solution by micro-plasma oxidation (MPO). The salt spray tests of the coated samples and the substrates were carded out in a salt spray test machine. The phase composition and surface morphology of the coatings were investigated by XRD and SEAM. Severe corrosion occurred on the substrate surface, while there were no obvious corrosion phenomena on the coated samples. The coatings were composed of Al2TiO5 and a little α-Al2O3 and mille TiO2, and the salt spray test did not change the composition of the coatings. The weight loss rate of the coatings decreased with increasing MPO time because of the increase in density and thickness of the coatings. The surface morphology of the coatings was influenced by salt spray corrosion test. Among the coated samples, the coating prepared for 2 h has the best corrosion resistance under salt spray test.
基金National Natural Science Foundation of China(No.11675031) for their support of this research
文摘The feasibility of the formation of a liquid plasma catalysis system through micro arc oxidation(MAO) under AC power with titanium-aluminum alloy electrodes was investigated.In the decolorization of organic dyeing wastewater simulated with Rhodamine B,Ti-Al alloy electrodes were superior over Ti electrodes and Al electrodes.The optimal molar percentage of Ti in alloy electrodes was 70%and the optimal decolorization rate was up to 88.9%if the additive suitable for Al was added into the solution to be treated.The decolorization rates were the same in the case of the alloy-alloy electrodes and alloy-Al electrodes.The proportion of the effects of plasma,TiO2 catalyzer during MAO and H2O2 after MAO in decolorization has been obtained.With the catalysis of TiO2 formed on the electrodes,the reaction rate was improved by a maximum of 95%and the decolorization rate was improved by a maximum of 71.6%.Based on the spectral analysis,the plasma catalysis mechanism has been studied.
文摘Micro arc oxidation of wire arc sprayed Al-Mg6, Al-Si12 and Pure Al coatings on low carbon steel has been performed. The coatings have been analyzed using optic microscope, scanning electron microscopy, X-ray diffraction and surface roughness tester. At the same time, voltage and current regimes are investigated during the process. Then after MAO process, uniform Al2O3 ceramic coatings have been deposited on surface of Al-Mg6, Al-Si12 and Al coated steel. The ceramic coatings are mainly composed of Al2O3 phase. The compound coatings show high hardness and significant improvement of corrosion resistance property.
文摘The alumina ceramic coatings were prepared on aluminum alloy using micro-plasma oxidation. The structure and morphologies of ceramic coatings were studied by X-ray diffraction (XRD) and scanning electron microscope (SEM), and then its formation process was investigated. The results of XRD reveal that with increasing oxidation time the content of decreases, and in which the content of al reaction occurs between the aluminum from the substrate and the oxygen and other ions from the electrolyte. The reaction products then are propelled away from the inner-wall of the discharging channels. Finally, these products agglomerate in the inner-wall of the discharging channels and on the surface near the discharging channels to produce the ceramic coatings. The change of ceramic coatings thickness with increasing oxidation time divides into two stages, and the final thickness is formed in first stage. With increasing current density the final thickness of ceramic coatings increases.