Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.Thi...Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields.展开更多
A novel micro fused-casting for metal(MFCM) process for producing A356 aluminum alloy slurry was proposed. MFCM means that the refined metal slurry is pressed out from the outlet of bottom of crucible to the horizon...A novel micro fused-casting for metal(MFCM) process for producing A356 aluminum alloy slurry was proposed. MFCM means that the refined metal slurry is pressed out from the outlet of bottom of crucible to the horizontal movable plate. With the aid of 3D manufacturing software, the melt is solidified and formed layer by layer. The stirring could keep the ingredients and the heat diffusion of metal slurry uniform in the crucible due to the shear force breaking down the dendrite arms. The solidus and liquidus temperatures of A356 alloy were 559.2 and 626.3 ℃, respectively, which were measured by differential scanning calorimetry(DSC). Effect of different stirring velocities of MFCM on the microstructure and mechanical properties of A356 slurry was investigated with the pouring temperature controlled at 620 ℃. The microstructure and mechanical performance were the best when the stirring velocity was 1 200 r/min in MFCM. The microstructures of the A356 aluminum alloy slurry were mainly composed of fine spherical or rose grains. The average roundness and average grain size reached 2.2 and 41 μm and the tensile strength of A356 alloy slurry reached 207.8 MPa, while the average vickers hardness was 81.1 HV.展开更多
Theeffectsof Nband Ti+ Nb microalloyingon mechanicalpropertiesand rupturelifeunder900 ℃ tensiletest on alloy GH652 were studied. Among theoriginalalloy GH652 and its Nb/ Ti+ Nb microalloyed alloys, the Ti+ Nb micro...Theeffectsof Nband Ti+ Nb microalloyingon mechanicalpropertiesand rupturelifeunder900 ℃ tensiletest on alloy GH652 were studied. Among theoriginalalloy GH652 and its Nb/ Ti+ Nb microalloyed alloys, the Ti+ Nb microalloyed alloy exhibited optimum com bined900℃ tensilestrength and plasticity and longer 900℃ 49 MPa prolonged tensile rup turelife as well. The role of refractory alloying elementscould be effectively brought intoplay with highertemperaturesolution treatment. Coordination strengthening of Matrix andgrain boundary wasthekeyfactoroflifetimeextension andthe mobilityof dislocationsinthematrix wasresponsableforthe plasticity ofthe micro alloyedsamples.展开更多
A new polymer, poly-silicon-ferric with oxidization (PSFN) coagulant was produced by adding KMnO4 and stabilizer M to poly-silicon-ferric (PSF) coagulant. The micro properties of PSFN was investigated with optical...A new polymer, poly-silicon-ferric with oxidization (PSFN) coagulant was produced by adding KMnO4 and stabilizer M to poly-silicon-ferric (PSF) coagulant. The micro properties of PSFN was investigated with optical microscope, transmission electron microscope(TEM), ultraviolet/visible absorption(UVA) scanning, infrared(IR) spectrometer and oxidation-reduction potential (ORP) meter respectively, compared to that of PSE The coagulation behavior by PSFN was investigated compared to that by PSF. The results show that the micro properties of PSF have been changed greatly due to the addition of KMnO4, and there exists KMnO4 unattached in PSFN. A kind of tetrahedron structure somewhat like the connection of Si-O-Si bonds may be formed by the complexation of Mn (maybe in various valence) with PSE PSFN has lower turbidity removal than PSF at lower dose and achieves the same when the dose reaches a definite amount, while the removal of UV254 by PSFN is higher than that by PSF almost over entire dose range with the largest difference of about 17%. PSFN has more oxidization function at acidic condition than that at basic condition, and gives stronger ability of application for treating various waters than that by PSE.展开更多
Owing to the environmental protection potential and the desirable high performance capabilities,asphalt rubber(AR)and styrene-butadiene-styrene(SBS)modified asphalt have been widely used.However,the poor construction ...Owing to the environmental protection potential and the desirable high performance capabilities,asphalt rubber(AR)and styrene-butadiene-styrene(SBS)modified asphalt have been widely used.However,the poor construction workability and segregation issues of AR,along with the exorbitant cost of SBS modified asphalt,are of the serious problems that plague their application scope.Moreover,SBS/crumb rubber(CR)modified asphalt is gradually becoming widespread and it therefore becomes incumbent to find appropriate ways to mitigate the issues that may limit its use.As a consequence,it becomes crucial to analyze the interaction between CR and SBS modifiers in the composite mixture,as well as evaluate the influence of modifier dosage on the performance of the modified asphalt.This study presents a comprehensive review of the effects of SBS modifier,CR modifier and composite SBS/CR on the performance of modified asphalts.Macro analysis and micro analysis,including analysis on the conventional physical properties,are carried out.It can uncover the interaction between modifier and asphalt,which reveals how the modifiers influence the properties of modified asphalts.This study will serve as a source of invaluable information to researchers,engineers,and designers,informing them the development,potential and challenges of the CR,SBS and SBS/CR modified asphalts,the optimum contents to attain the best performance along with the mechanism involved.展开更多
基金the National Natural Science Foundation of China(Nos.52374147,42372328,and U23B2091)National Key Research and Development Program of China(No.2023YFC3804200)Xinjiang Uygur Autonomous Region Science and Technology Major Program(No.2023A01002).
文摘Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields.
基金Funded by the National Natural Science Foundation of China(No.51341009)
文摘A novel micro fused-casting for metal(MFCM) process for producing A356 aluminum alloy slurry was proposed. MFCM means that the refined metal slurry is pressed out from the outlet of bottom of crucible to the horizontal movable plate. With the aid of 3D manufacturing software, the melt is solidified and formed layer by layer. The stirring could keep the ingredients and the heat diffusion of metal slurry uniform in the crucible due to the shear force breaking down the dendrite arms. The solidus and liquidus temperatures of A356 alloy were 559.2 and 626.3 ℃, respectively, which were measured by differential scanning calorimetry(DSC). Effect of different stirring velocities of MFCM on the microstructure and mechanical properties of A356 slurry was investigated with the pouring temperature controlled at 620 ℃. The microstructure and mechanical performance were the best when the stirring velocity was 1 200 r/min in MFCM. The microstructures of the A356 aluminum alloy slurry were mainly composed of fine spherical or rose grains. The average roundness and average grain size reached 2.2 and 41 μm and the tensile strength of A356 alloy slurry reached 207.8 MPa, while the average vickers hardness was 81.1 HV.
文摘Theeffectsof Nband Ti+ Nb microalloyingon mechanicalpropertiesand rupturelifeunder900 ℃ tensiletest on alloy GH652 were studied. Among theoriginalalloy GH652 and its Nb/ Ti+ Nb microalloyed alloys, the Ti+ Nb microalloyed alloy exhibited optimum com bined900℃ tensilestrength and plasticity and longer 900℃ 49 MPa prolonged tensile rup turelife as well. The role of refractory alloying elementscould be effectively brought intoplay with highertemperaturesolution treatment. Coordination strengthening of Matrix andgrain boundary wasthekeyfactoroflifetimeextension andthe mobilityof dislocationsinthematrix wasresponsableforthe plasticity ofthe micro alloyedsamples.
基金Supported by National Program on Key Basic Research Projects (2004CB418500).
文摘A new polymer, poly-silicon-ferric with oxidization (PSFN) coagulant was produced by adding KMnO4 and stabilizer M to poly-silicon-ferric (PSF) coagulant. The micro properties of PSFN was investigated with optical microscope, transmission electron microscope(TEM), ultraviolet/visible absorption(UVA) scanning, infrared(IR) spectrometer and oxidation-reduction potential (ORP) meter respectively, compared to that of PSE The coagulation behavior by PSFN was investigated compared to that by PSF. The results show that the micro properties of PSF have been changed greatly due to the addition of KMnO4, and there exists KMnO4 unattached in PSFN. A kind of tetrahedron structure somewhat like the connection of Si-O-Si bonds may be formed by the complexation of Mn (maybe in various valence) with PSE PSFN has lower turbidity removal than PSF at lower dose and achieves the same when the dose reaches a definite amount, while the removal of UV254 by PSFN is higher than that by PSF almost over entire dose range with the largest difference of about 17%. PSFN has more oxidization function at acidic condition than that at basic condition, and gives stronger ability of application for treating various waters than that by PSE.
基金funded by Key Research and Development Project of Shaanxi Province(2022SF-328)the Science and Technology Project of Henan Department of Transportation(2020J-2-3)+1 种基金Science and Technology Project of Shaanxi Department of Transportation(No.19-10K,No.19-28K)Rising Tech Star Project of Shaanxi Department of Science and Technology(No.2019KJXX-035)。
文摘Owing to the environmental protection potential and the desirable high performance capabilities,asphalt rubber(AR)and styrene-butadiene-styrene(SBS)modified asphalt have been widely used.However,the poor construction workability and segregation issues of AR,along with the exorbitant cost of SBS modified asphalt,are of the serious problems that plague their application scope.Moreover,SBS/crumb rubber(CR)modified asphalt is gradually becoming widespread and it therefore becomes incumbent to find appropriate ways to mitigate the issues that may limit its use.As a consequence,it becomes crucial to analyze the interaction between CR and SBS modifiers in the composite mixture,as well as evaluate the influence of modifier dosage on the performance of the modified asphalt.This study presents a comprehensive review of the effects of SBS modifier,CR modifier and composite SBS/CR on the performance of modified asphalts.Macro analysis and micro analysis,including analysis on the conventional physical properties,are carried out.It can uncover the interaction between modifier and asphalt,which reveals how the modifiers influence the properties of modified asphalts.This study will serve as a source of invaluable information to researchers,engineers,and designers,informing them the development,potential and challenges of the CR,SBS and SBS/CR modified asphalts,the optimum contents to attain the best performance along with the mechanism involved.