This research reports the processing of magnesium matrix composites reinforced with silicon carbide(SiC)and aluminium oxide(Al_(2)O_(3))using powder metallurgy technique through high energy milling.Samples of Mg-SiC a...This research reports the processing of magnesium matrix composites reinforced with silicon carbide(SiC)and aluminium oxide(Al_(2)O_(3))using powder metallurgy technique through high energy milling.Samples of Mg-SiC and Mg-Al_(2)O_(3)composites subjected to high energy ball milling for different vol%of secondary particles 20,30 and 40%of SiC and Al_(2)O_(3)are studied by X-Ray diffraction technique.The rietveld method as implemented in the Fullprof program is applied in order to determine the quantities of the resulting crystalline phases and amorphous phases at each stage of the mechanical treatment.Microstructural examination is carried out using Scanning Electron Microscope(SEM).In addition,crystal structural analysis using appropriate size and strain models is performed in order to handle the distinctive anistrophy that is observed in convinced crystallographic directions for the magnesium composite.The results are furnished in terms of crystalline domains size enlargement of the magnesium composites phases upon prolonged milling duration and discussed in the light of up to date views and theories on crystal growth of nanocrystaline materials.The hardness of the composite samples is calculated by Vickers’s Hardness tester.Further,dry sling wear test and corrosion test are performed for the fabricated composites.Composite with 30%secondary particles incorporated magnesium composites exhibits better wear and corrosion resistance than the other composites.展开更多
The montmorillonite was studied by differen t methods, such as chemical analysis, DAT, TG, X RD, IR, AFM and MAS NMR. The experimental results show that the hydroxyl in octa hedra sheets begins dehydrating when the t...The montmorillonite was studied by differen t methods, such as chemical analysis, DAT, TG, X RD, IR, AFM and MAS NMR. The experimental results show that the hydroxyl in octa hedra sheets begins dehydrating when the thermal treatment temperature reaches 659℃, but th e layer structure remains the same,and the corresponding Al(Ⅵ) is turned into Al(Ⅳ) in octahedra sheets. When the temperature reaches 900℃, the layer struct ure of montmorillontite is destroyed, and the new mineral phase μ-cordierite i s found. When the temperature reaches 1200℃, the μ-cordierite phase loses its stability, and decomposes into cristobalite phase and mullite phase.Meanwhile, the recrystallization phenomenon in thermal treatment products is obvious. There is a small quantity of Al Ⅵ signal in MAS NMR spectrum, corresponding to Al of mullite. When the temperature reaches 1350℃, the cristobalite and mullite phases reduce slightly, and more Fe-cordierite phase appears, corresponding to Fe-cordierite spectrum in XRD and MAS NMR.展开更多
Stretchable elastomer-based electrodes are considered promising energy storage electrodes for next-generation wearable/flexible electronics requiring various shape designs.However,these elastomeric electrodes suffer f...Stretchable elastomer-based electrodes are considered promising energy storage electrodes for next-generation wearable/flexible electronics requiring various shape designs.However,these elastomeric electrodes suffer from the limited electrical conductivity of current collectors,low charge storage capacities,poor interfacial interactions between elastomers and conductive/active materials,and lack of shape controllability.In this study,we report hierarchically micro/nano-wrinkle-structured elastomeric electrodes with notably high energy storage performance and good mechanical/electrochemical stabilities,simultaneously allowing various form factors.For this study,a swelling/deswelling-involved metal nanoparticle(NP)assembly is first performed on thiol-functionalized polydimethylsiloxane(PDMS)elastomers,generating a micro-wrinkled structure and a conductive seed layer for subsequent electrodeposition.After the assembly of metal NPs,the conformal electrodeposition of Ni and NiCo layered double hydroxides layers with a homogeneous nanostructure on the micro-wrinkled PDMS induces the formation of a micro/nano-wrinkled surface morphology with a large active surface area and high electrical conductivity.Based on this unique approach,the formed elastomeric electrodes show higher areal capacity and superior rate capability than conventional elastomeric electrodes while maintaining their electrical/electrochemical properties under external mechanical deformation.This notable mechanical/electrochemical performance can be further enhanced by using spiral-structured PDMS(stretchability of~500%)and porous-structured PDMS(areal capacity of~280μAh cm^(-2)).展开更多
The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materia...The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materials,which have been utilized in lithium ion batteries with enhanced energy and power density,high energy efficiency,superior rate capability and excellent cycling stability resulting from the doping,surface coating,nanocomposites and nano-architecturing.展开更多
[ Objective] Correlation of microstructure of leaf sheath epidermis and nutrient composition of palm plants with the damage degree of red palm fiber elephant in four kinds of plants in Nanning were analyzed in order t...[ Objective] Correlation of microstructure of leaf sheath epidermis and nutrient composition of palm plants with the damage degree of red palm fiber elephant in four kinds of plants in Nanning were analyzed in order to control the occurrence and damage of this insect in Nanning. [Method] Taken 4 kinds of Palmae plants in Nanning including Ravenea fivulafis, Washingtonia filifera, Phoenix canafiensis, Roystonea regia (HBK.)O. F. Cook as materials, damage situation of the red palm fiber elephant was investigated, microstructure of leaf sheath epidermis and nutrient composition of palm plants were analyzed and determined. [ Result] The results showed that there was direct correlation between the microstructure of leaf sheath epidermis and nutrient composition with the physical resistance of palm plant against red palm fiber elephant. The extend of damage from red palm fiber elephant had negatively relation with the thickness of corneum and leaf epidermis. The damage degree caused by red palm fiber elephant increased with the content of crude protein, crude ash and nitrogen free extract increasing, also increased with the content of rude fiber decreasing. [Condusion] The damage degree of red palm fiber elephant had a relationship with microstructure of leaf sheath epidermis and nutrient composition of palm plants.展开更多
Over millions of years of natural evolution,organisms have developed nearly perfect structures and functions.The self-fabrication of organisms serves as a valuable source of inspiration for designing the next-generati...Over millions of years of natural evolution,organisms have developed nearly perfect structures and functions.The self-fabrication of organisms serves as a valuable source of inspiration for designing the next-generation of structural materials,and is driving the future paradigm shift of modern materials science and engineering.However,the complex structures and multifunctional integrated optimization of organisms far exceed the capability of artificial design and fabrication technology,and new manufacturing methods are urgently needed to achieve efficient reproduction of biological functions.As one of the most valuable advanced manufacturing technologies of the 21st century,laser processing technology provides an efficient solution to the critical challenges of bionic manufacturing.This review outlines the processing principles,manufacturing strategies,potential applications,challenges,and future development outlook of laser processing in bionic manufacturing domains.Three primary manufacturing strategies for laser-based bionic manufacturing are elucidated:subtractive manufacturing,equivalent manufacturing,and additive manufacturing.The progress and trends in bionic subtractive manufacturing applied to micro/nano structural surfaces,bionic equivalent manufacturing for surface strengthening,and bionic additive manufacturing aiming to achieve bionic spatial structures,are reported.Finally,the key problems faced by laser-based bionic manufacturing,its limitations,and the development trends of its existing technologies are discussed.展开更多
[Objective] The paper was to study the effect of microporous structure of ac- tivated carbon on adsorption performance of n-butane. [Method] Using 8 activated car- bons prepared from different materials and technologi...[Objective] The paper was to study the effect of microporous structure of ac- tivated carbon on adsorption performance of n-butane. [Method] Using 8 activated car- bons prepared from different materials and technologies, the effects of physical prop- erties of activated carbon on butane adsorption performance were investigated. [Result] Specific surface area, pore volume and pore size distribution of activated carbon exert- ed remarkable effects on butane adsorption. The activated carbon with high percent- age of micropore volume within the range of 1.2-2 nm possessed high butane activity. The level of butane retentivity rose with the increase of the volume of pore within the range of 0.5-0,9 nm, which led to smaller butan working capacity (BWC). [Conclusion] The study provided reference for the adsorption research for activated carbon.展开更多
In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The result...In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.展开更多
In this study, reheating of liquidus semi-continuous cast billets of 7075 Al alloy was carried out in a resistance furnace, and the temperature contrast of the outer and the center of the reheated billets was investig...In this study, reheating of liquidus semi-continuous cast billets of 7075 Al alloy was carried out in a resistance furnace, and the temperature contrast of the outer and the center of the reheated billets was investigated, then the reheating microstructures were investigated. Results show that: the difference of temperature between the outer and center is small and the difference of their microstructures are also small. During reheating at 576℃ the spheroidization of grains is significant after 5min and no rosettes are visible after 20min by optical microscopy. Similar observations were madeon materials reheated at 596℃, but the ripening process is faster. The grains growup to 30-60μm, fine enough for thixoforming.展开更多
In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)proce...In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)process on Ti6Al4V alloy in NaF electrolyte.The influence of NaF concentration(0.15-0.50 mol/L)on the PEO process,microstructure,phase composition,corrosion resistance and thickness of the coatings was investigated using scanning/transmission electron microscopy,energy dispersive spectroscopy,atomic force microscopy,X-ray diffractometer,and potentiodynamic polarization.The results demonstrated that Ti6Al4V alloy had low PEO voltage(less than 200 V)in NaF electrolyte,which decreased further as the NaF concentration increased.A micro/nano-structured coating with 10-15μm pits and 200-800 nm pores was formed in NaF electrolyte;the morphology was different from the typical pancake structure obtained with other electrolytes.The coating formed in NaF electrolyte had low surface roughness and was thin(<4μm).The NaF concentration had a small effect on the phase transition from metastable anatase phase to stable rutile phase,but greatly affected the corrosion resistance.In general,as the NaF concentration increased,the surface roughness,phase(anatase and rutile)contents,corrosion resistance,and thickness of the coating first increased and then decreased,reaching the maximum values at 0.25 mol/L NaF.展开更多
Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the m...Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the metal material deposition. Up to now, the studies of micro EDM deposition process focused mainly on the researches of deposition process, namely the effects of discharge parameters in deposition process on the deposition rate or deposition quality. The research of the formation of micro structures with different discharge energy density still lacks. With proper conditions and only by the z-axis feeding in vertical direction, a novel shape of micro spiral structure can be deposited, with 0.11 mm in wire diameter, 0.20 mm in outside diameter, and 3.78 mm in height. Then some new deposition strategies including angular deposition and against the gravity deposition were also successful. In order to find the forming mechanism of the spiral structures, the numerical simulation of the transient temperature distribution on the discharge point was conducted by using the finite-element method(FEM). The results show that there are two major factors lead to the forming of the spiral structures. One is the different material removal form of tool electrode according with the discharge energy density, the other is the influenced degree of the movement of the removed material particles in the discharge gap. The more the energy density in single discharge is, the smaller the mass of the removed material particles is, and the easier the movements of which will be changed to form an order tendency. The fine texture characteristics of the deposited micro spiral structures were analyzed by the energy spectrum analysis and the metallographic analysis. It shows that the components of the deposited material are almost the same as those of the tool electrode. Moreover the deposited material has the brass metallic luster in the longitudinal profile and has compact bonding with the base material. This research is useful to understand the micro-process of micro EDM deposition better and helpful to increase the controllability of the new EDM method for fabrication of micro structures.展开更多
Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two diffe...Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two different modes including filmwise (FWC) and dropwise (DWC) condensation.DWC occurring on hydrophobic and superhydrophobic surfaces has a much higher heat transfer capacity than FWC.Therefore,wide investigations have been done to produce DWC in recent years.Superhydrophobic surfaces have micro/nano structures with low surface energy.In this study,a two-step electrodeposition process is used to produce micro/nano structures on copper specimens.The surface energy of specimens is reduced by a self-assembled monolayer using ethanol and 1-octadecanethiol solution.The results show that there is an optimum condition for electrodeposition parameters.For example,a surface prepared by 2000 s step time has 5 times greater heat transfer than FWC while a surface with 4000 s step time has nearly the same heat transfer as FWC.The surfaces of the fabricated specimens are examined using XRD and SEM analyses.The SEM analyses of the surfaces show that there are some micro-structures on the surfaces and the surface porosities are reduced by increasing the second step electrodeposition time.展开更多
A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods....A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods. Evaluation of catalytic activity of both the commercial Y-zeolite and the novel Y-zeolite-containing composite material was carried out in the pulse micro-chromatography platform with two probe molecules of different molecular sizes: VGO feedstock and 1,3,5 tri-isopropyl benzene. It was found that the Y-zeolite-containing composite material was richer in external surface and meso-/macro-pores; the Y-zeolite-containing composite material demonstrated a smaller rate of deactivation compared to the commercial Y-zeolite.展开更多
This study proposes a micro vibration mitigation system using viscous dampers to solve the problem of vibration in a high-tech building. Due to the operating frequency of the air conditioners and fundamental mode of t...This study proposes a micro vibration mitigation system using viscous dampers to solve the problem of vibration in a high-tech building. Due to the operating frequency of the air conditioners and fundamental mode of the floors, a resonant phenomenon is occasionally experienced at the upper levels of the structure. Several strategies were considered, and viscous dampers combined with a suspension system were chosen to mitigate this annoying situation. A theoretical analysis was first executed to determine the optimal design value of the damper and the suspension spring. An efficient reduction in floor velocity of approximately 50 % was achieved by the proposed system. Practical verifications including a performance test of the micro-vibration-oriented dampers, the pragmatic application result, and a comparison in one-third octave spectrum was then carried out. The performance of the system was demonstrated by the data measured. It alleviated more trembling than was numerically expected. The energy absorbed by the viscous dampers is illustrated by the hysteresis loops and the one-third octave spectrum. It is found that with the proposed system, the vibration can be effectively captured by the viscous damper and converted to lower frequency-content tremors. The success of this project greatly supports the proposed standard two-stage analysis procedure for mitigating micro-vibration problems in practice. This research extends the use of viscous dampers to a new field.展开更多
Micro electro discharge machining (micro EDM) is a feasible way tomanufacture micro structures and has potential application in advanced industrial fields. For therealization of micro EDM, it is necessary to pay caref...Micro electro discharge machining (micro EDM) is a feasible way tomanufacture micro structures and has potential application in advanced industrial fields. For therealization of micro EDM, it is necessary to pay careful attention to its equipment design and thedevelopment of process techniques. The present status of research and development of micro EDMequipment and process techniques is overviewed. A micro electro discharge machine incorporated withan inchworm type of micro feed mechanism is introduced, and a micro electro discharge machine fordrilling micro holes suitable to industrial use is also introduced. Some of the machiningexperiments carried out on the micro EDM prototypes are shown and the feasibility of the micro EDMtechnology to practical use is discussed.展开更多
INCONEL725 is a highly corrosion resistant nickel based alloy capable of being age-hardened to high strength levels. The micro structure observations and the phase identification after a standard heat treatment were i...INCONEL725 is a highly corrosion resistant nickel based alloy capable of being age-hardened to high strength levels. The micro structure observations and the phase identification after a standard heat treatment were investigated. The results show that the precipitation phases include the strengthening phasesγ', γ', and 8 phase, primary carbide phase TiC, as well as M6 C carbide and a little extent MC (mainly TiC) precipitates which nucleate mainly at grain boundaries. An isothermal aging study was carried out on this alloy for up to 10 000 hours at 593℃. This additional aging did not affect the tensile strength. However, micro structures show that the thermal exposure has a little additional effect. With increasing the exposure time, the size of γ' phase slightly increases, almost no change for γ' phase, while M6C carbides precipitated at grain boundaries have an increased and complex tendency on a few grain boundaries. The experimental results illustrate the excellent structure stability of the age-hardenable IN725 at 593℃.展开更多
The phase transformation behavior and micro structure of Nb-Ru alloys have been studied by DSC, X-ray diffraction, optical microscopy, transmission electron microscopy (TEM) and high-resolution electron microscopy (HR...The phase transformation behavior and micro structure of Nb-Ru alloys have been studied by DSC, X-ray diffraction, optical microscopy, transmission electron microscopy (TEM) and high-resolution electron microscopy (HREM). Two-step phase transformation of CsCl (β) →face-centered tetragonal (β)→ monoclinic (β') occurs during cooling from high temperature to room temperature. The lattice parameters of marten-sites of Nb-Ru alloys were found to increase with the increase of Nb content. The martensite variants exhibit triangular self-accommodating morphology, with alternating regular bands inside. The twinning relationship between the sub structural bands was found to be (101) type I mode, and this kind of twinning interface was straight, well-defined and coherent.展开更多
ZnO micro/nano complex structure films, including reticulate papillary nodes, petal-like and flake-hole, have been self-assembled by a hydrothermal technique at different temperatures without metal catalysts. The wett...ZnO micro/nano complex structure films, including reticulate papillary nodes, petal-like and flake-hole, have been self-assembled by a hydrothermal technique at different temperatures without metal catalysts. The wettability of the above film surfaces was modified with a simple coating of heptadecafluorodecyltrimethoxy-silane in toluene. After modifying, the surface of ZnO film grown at 50℃ was converted from superhydrophilic with a water contact angle lower than 5° to superhydrophobic with a water contact angle of 165° Additionally, the surface of reticulate papillary nodes ZnO film grown at 100 ℃ had excellent superhydrophobicity, with a water contact angle of 173° and a sliding angle lower than 2° Furthermore, the water contact angle on the surface of petal-like and flake-hole ZnO films grown at 150℃ and 200℃ were found to be 140° and 120°, respectively. The wettability for the samples was found to depend strongly on the surface morphology which results from the growth temperature.展开更多
A Micro Electrical Discharge Machining (MEDM) equipment was developed in this paper,on which the CNC interpolation for 3-axis linkage movement could be realized easily. By this micro-EDM equipment,the fabrication proc...A Micro Electrical Discharge Machining (MEDM) equipment was developed in this paper,on which the CNC interpolation for 3-axis linkage movement could be realized easily. By this micro-EDM equipment,the fabrication process of microelectrode,micro hole,silicon wafer and complex microstructure was discussed. The process rules of machining efficiency and the relative electrode wear rate as well as the machining mechanism and performance of silicon micro-EDM were also researched. Machining experiments showed that the microelectrode diameter as small as 6 μm and the micro hole with minimum size of 10 μm could be obtained steadily,and the maximum aspect ratios of microelectrode and micro hole were over 25 and 10 respectively. And silicon micro-EDM experiments showed that the micro beam with the aspect ratios over 15 could be obtained easily. And a micro beam with minimum size of 23 μm width on a silicon wafer with 420 μm thickness was achieved. At last,the microstructure machining technology for micro-EDM was also discussed. And a micro-facial sculpture with free space curved surface and size of 1 mm×0.3 mm×0.18 mm was also machined successfully.展开更多
O<span>steoporosis is an increasingly prevalent malady of the elderly that is associated with bone fragility and increased risk of fractures. Osteoporosis treatments focus on restoring bone strength and quality....O<span>steoporosis is an increasingly prevalent malady of the elderly that is associated with bone fragility and increased risk of fractures. Osteoporosis treatments focus on restoring bone strength and quality. Teriparatide (TPTD) is </span><span>a therapeutic agent that has been shown to increase bone strength by improving the volume and connectivity of trabecular bone. Exercise is also known to have pro-osteogenic effects. Here we used a rat model of severe osteoporosis (ovariectomized and tail-suspension) to evaluate th</span><span>e effects of TPTD, exercise and a combination of TPTD and exercise on the microstructure of trabecular </span><span>bone. TPTD mono-therapy and TPTD combined with exercise treatment significantly increased bone mineral density (BMD) in the whole body</span><span>. </span><span>Micro-computed tomography analysis revealed that </span><span>a combination of exercise and TPTD treatment significantly decreased bone surface to volume and trab</span><span>ecular separation compared with those of the control and exercise groups. Node-strut analysis indicated that exercise or TPTD alone did not affect trabecular bone connectivity. However, the combination of exercise and TPTD treatment significantly decreased measures of tra</span><span>becular bone connectivity (node number) that are consistent with a transition from rod-like to plate-like of trabecular bone microstructures. The combination treatment with exercise and TPTD improved microstructure of trabecular bone in the OVX and tail-suspended rats. These results indicate that combining exercise with TPTD represents a viable means to improve cancellous bone strength in osteoporosis populations.</span>展开更多
文摘This research reports the processing of magnesium matrix composites reinforced with silicon carbide(SiC)and aluminium oxide(Al_(2)O_(3))using powder metallurgy technique through high energy milling.Samples of Mg-SiC and Mg-Al_(2)O_(3)composites subjected to high energy ball milling for different vol%of secondary particles 20,30 and 40%of SiC and Al_(2)O_(3)are studied by X-Ray diffraction technique.The rietveld method as implemented in the Fullprof program is applied in order to determine the quantities of the resulting crystalline phases and amorphous phases at each stage of the mechanical treatment.Microstructural examination is carried out using Scanning Electron Microscope(SEM).In addition,crystal structural analysis using appropriate size and strain models is performed in order to handle the distinctive anistrophy that is observed in convinced crystallographic directions for the magnesium composite.The results are furnished in terms of crystalline domains size enlargement of the magnesium composites phases upon prolonged milling duration and discussed in the light of up to date views and theories on crystal growth of nanocrystaline materials.The hardness of the composite samples is calculated by Vickers’s Hardness tester.Further,dry sling wear test and corrosion test are performed for the fabricated composites.Composite with 30%secondary particles incorporated magnesium composites exhibits better wear and corrosion resistance than the other composites.
基金Funded by the National Natural Science Foundation of China (40202007 ) and the Natural Science Foundation of GuangdongProvince(000623,020938)
文摘The montmorillonite was studied by differen t methods, such as chemical analysis, DAT, TG, X RD, IR, AFM and MAS NMR. The experimental results show that the hydroxyl in octa hedra sheets begins dehydrating when the thermal treatment temperature reaches 659℃, but th e layer structure remains the same,and the corresponding Al(Ⅵ) is turned into Al(Ⅳ) in octahedra sheets. When the temperature reaches 900℃, the layer struct ure of montmorillontite is destroyed, and the new mineral phase μ-cordierite i s found. When the temperature reaches 1200℃, the μ-cordierite phase loses its stability, and decomposes into cristobalite phase and mullite phase.Meanwhile, the recrystallization phenomenon in thermal treatment products is obvious. There is a small quantity of Al Ⅵ signal in MAS NMR spectrum, corresponding to Al of mullite. When the temperature reaches 1350℃, the cristobalite and mullite phases reduce slightly, and more Fe-cordierite phase appears, corresponding to Fe-cordierite spectrum in XRD and MAS NMR.
基金the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT,Ministry of Science and ICT)(NRF-2021R1A2C3004151)Ministry of Education(NRF-2022R1A6A3A01086019)the KU-KIST School Program.
文摘Stretchable elastomer-based electrodes are considered promising energy storage electrodes for next-generation wearable/flexible electronics requiring various shape designs.However,these elastomeric electrodes suffer from the limited electrical conductivity of current collectors,low charge storage capacities,poor interfacial interactions between elastomers and conductive/active materials,and lack of shape controllability.In this study,we report hierarchically micro/nano-wrinkle-structured elastomeric electrodes with notably high energy storage performance and good mechanical/electrochemical stabilities,simultaneously allowing various form factors.For this study,a swelling/deswelling-involved metal nanoparticle(NP)assembly is first performed on thiol-functionalized polydimethylsiloxane(PDMS)elastomers,generating a micro-wrinkled structure and a conductive seed layer for subsequent electrodeposition.After the assembly of metal NPs,the conformal electrodeposition of Ni and NiCo layered double hydroxides layers with a homogeneous nanostructure on the micro-wrinkled PDMS induces the formation of a micro/nano-wrinkled surface morphology with a large active surface area and high electrical conductivity.Based on this unique approach,the formed elastomeric electrodes show higher areal capacity and superior rate capability than conventional elastomeric electrodes while maintaining their electrical/electrochemical properties under external mechanical deformation.This notable mechanical/electrochemical performance can be further enhanced by using spiral-structured PDMS(stretchability of~500%)and porous-structured PDMS(areal capacity of~280μAh cm^(-2)).
基金Projects(51134007,21003161,21250110060) supported by the National Natural Science Foundation of ChinaProject(11MX10) supported by Central South University Annual Mittal-Founded Innovation ProjectProject(2011ssxt086) supported by Fundamental Research Funds for the Central Universities,China
文摘The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materials,which have been utilized in lithium ion batteries with enhanced energy and power density,high energy efficiency,superior rate capability and excellent cycling stability resulting from the doping,surface coating,nanocomposites and nano-architecturing.
基金Supported by Guangxi Agricultural College Science Topics(B070206)~~
文摘[ Objective] Correlation of microstructure of leaf sheath epidermis and nutrient composition of palm plants with the damage degree of red palm fiber elephant in four kinds of plants in Nanning were analyzed in order to control the occurrence and damage of this insect in Nanning. [Method] Taken 4 kinds of Palmae plants in Nanning including Ravenea fivulafis, Washingtonia filifera, Phoenix canafiensis, Roystonea regia (HBK.)O. F. Cook as materials, damage situation of the red palm fiber elephant was investigated, microstructure of leaf sheath epidermis and nutrient composition of palm plants were analyzed and determined. [ Result] The results showed that there was direct correlation between the microstructure of leaf sheath epidermis and nutrient composition with the physical resistance of palm plant against red palm fiber elephant. The extend of damage from red palm fiber elephant had negatively relation with the thickness of corneum and leaf epidermis. The damage degree caused by red palm fiber elephant increased with the content of crude protein, crude ash and nitrogen free extract increasing, also increased with the content of rude fiber decreasing. [Condusion] The damage degree of red palm fiber elephant had a relationship with microstructure of leaf sheath epidermis and nutrient composition of palm plants.
基金supported by the National Natural Science Foundation of China (Nos. 52235006 and 52025053)the National Key Research and Development Program of China (No. 2022YFB4600500)
文摘Over millions of years of natural evolution,organisms have developed nearly perfect structures and functions.The self-fabrication of organisms serves as a valuable source of inspiration for designing the next-generation of structural materials,and is driving the future paradigm shift of modern materials science and engineering.However,the complex structures and multifunctional integrated optimization of organisms far exceed the capability of artificial design and fabrication technology,and new manufacturing methods are urgently needed to achieve efficient reproduction of biological functions.As one of the most valuable advanced manufacturing technologies of the 21st century,laser processing technology provides an efficient solution to the critical challenges of bionic manufacturing.This review outlines the processing principles,manufacturing strategies,potential applications,challenges,and future development outlook of laser processing in bionic manufacturing domains.Three primary manufacturing strategies for laser-based bionic manufacturing are elucidated:subtractive manufacturing,equivalent manufacturing,and additive manufacturing.The progress and trends in bionic subtractive manufacturing applied to micro/nano structural surfaces,bionic equivalent manufacturing for surface strengthening,and bionic additive manufacturing aiming to achieve bionic spatial structures,are reported.Finally,the key problems faced by laser-based bionic manufacturing,its limitations,and the development trends of its existing technologies are discussed.
基金Supported by "Eleventh Five-Year" National Science and Technology Support Project(2009BADB1B03)Forestry Public Welfare Industry Special (201004051)~~
文摘[Objective] The paper was to study the effect of microporous structure of ac- tivated carbon on adsorption performance of n-butane. [Method] Using 8 activated car- bons prepared from different materials and technologies, the effects of physical prop- erties of activated carbon on butane adsorption performance were investigated. [Result] Specific surface area, pore volume and pore size distribution of activated carbon exert- ed remarkable effects on butane adsorption. The activated carbon with high percent- age of micropore volume within the range of 1.2-2 nm possessed high butane activity. The level of butane retentivity rose with the increase of the volume of pore within the range of 0.5-0,9 nm, which led to smaller butan working capacity (BWC). [Conclusion] The study provided reference for the adsorption research for activated carbon.
基金Project(2013AA050901)supported by the National High-tech Research and Development Program of China
文摘In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.
基金The National Natural Science Foundation of China (Grants No. 59974009) is greatly acknowledged for their financial support.
文摘In this study, reheating of liquidus semi-continuous cast billets of 7075 Al alloy was carried out in a resistance furnace, and the temperature contrast of the outer and the center of the reheated billets was investigated, then the reheating microstructures were investigated. Results show that: the difference of temperature between the outer and center is small and the difference of their microstructures are also small. During reheating at 576℃ the spheroidization of grains is significant after 5min and no rosettes are visible after 20min by optical microscopy. Similar observations were madeon materials reheated at 596℃, but the ripening process is faster. The grains growup to 30-60μm, fine enough for thixoforming.
文摘In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)process on Ti6Al4V alloy in NaF electrolyte.The influence of NaF concentration(0.15-0.50 mol/L)on the PEO process,microstructure,phase composition,corrosion resistance and thickness of the coatings was investigated using scanning/transmission electron microscopy,energy dispersive spectroscopy,atomic force microscopy,X-ray diffractometer,and potentiodynamic polarization.The results demonstrated that Ti6Al4V alloy had low PEO voltage(less than 200 V)in NaF electrolyte,which decreased further as the NaF concentration increased.A micro/nano-structured coating with 10-15μm pits and 200-800 nm pores was formed in NaF electrolyte;the morphology was different from the typical pancake structure obtained with other electrolytes.The coating formed in NaF electrolyte had low surface roughness and was thin(<4μm).The NaF concentration had a small effect on the phase transition from metastable anatase phase to stable rutile phase,but greatly affected the corrosion resistance.In general,as the NaF concentration increased,the surface roughness,phase(anatase and rutile)contents,corrosion resistance,and thickness of the coating first increased and then decreased,reaching the maximum values at 0.25 mol/L NaF.
基金supported by National Natural Science Foundation of China(Grant No.50675049)
文摘Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the metal material deposition. Up to now, the studies of micro EDM deposition process focused mainly on the researches of deposition process, namely the effects of discharge parameters in deposition process on the deposition rate or deposition quality. The research of the formation of micro structures with different discharge energy density still lacks. With proper conditions and only by the z-axis feeding in vertical direction, a novel shape of micro spiral structure can be deposited, with 0.11 mm in wire diameter, 0.20 mm in outside diameter, and 3.78 mm in height. Then some new deposition strategies including angular deposition and against the gravity deposition were also successful. In order to find the forming mechanism of the spiral structures, the numerical simulation of the transient temperature distribution on the discharge point was conducted by using the finite-element method(FEM). The results show that there are two major factors lead to the forming of the spiral structures. One is the different material removal form of tool electrode according with the discharge energy density, the other is the influenced degree of the movement of the removed material particles in the discharge gap. The more the energy density in single discharge is, the smaller the mass of the removed material particles is, and the easier the movements of which will be changed to form an order tendency. The fine texture characteristics of the deposited micro spiral structures were analyzed by the energy spectrum analysis and the metallographic analysis. It shows that the components of the deposited material are almost the same as those of the tool electrode. Moreover the deposited material has the brass metallic luster in the longitudinal profile and has compact bonding with the base material. This research is useful to understand the micro-process of micro EDM deposition better and helpful to increase the controllability of the new EDM method for fabrication of micro structures.
文摘Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two different modes including filmwise (FWC) and dropwise (DWC) condensation.DWC occurring on hydrophobic and superhydrophobic surfaces has a much higher heat transfer capacity than FWC.Therefore,wide investigations have been done to produce DWC in recent years.Superhydrophobic surfaces have micro/nano structures with low surface energy.In this study,a two-step electrodeposition process is used to produce micro/nano structures on copper specimens.The surface energy of specimens is reduced by a self-assembled monolayer using ethanol and 1-octadecanethiol solution.The results show that there is an optimum condition for electrodeposition parameters.For example,a surface prepared by 2000 s step time has 5 times greater heat transfer than FWC while a surface with 4000 s step time has nearly the same heat transfer as FWC.The surfaces of the fabricated specimens are examined using XRD and SEM analyses.The SEM analyses of the surfaces show that there are some micro-structures on the surfaces and the surface porosities are reduced by increasing the second step electrodeposition time.
文摘A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods. Evaluation of catalytic activity of both the commercial Y-zeolite and the novel Y-zeolite-containing composite material was carried out in the pulse micro-chromatography platform with two probe molecules of different molecular sizes: VGO feedstock and 1,3,5 tri-isopropyl benzene. It was found that the Y-zeolite-containing composite material was richer in external surface and meso-/macro-pores; the Y-zeolite-containing composite material demonstrated a smaller rate of deactivation compared to the commercial Y-zeolite.
文摘This study proposes a micro vibration mitigation system using viscous dampers to solve the problem of vibration in a high-tech building. Due to the operating frequency of the air conditioners and fundamental mode of the floors, a resonant phenomenon is occasionally experienced at the upper levels of the structure. Several strategies were considered, and viscous dampers combined with a suspension system were chosen to mitigate this annoying situation. A theoretical analysis was first executed to determine the optimal design value of the damper and the suspension spring. An efficient reduction in floor velocity of approximately 50 % was achieved by the proposed system. Practical verifications including a performance test of the micro-vibration-oriented dampers, the pragmatic application result, and a comparison in one-third octave spectrum was then carried out. The performance of the system was demonstrated by the data measured. It alleviated more trembling than was numerically expected. The energy absorbed by the viscous dampers is illustrated by the hysteresis loops and the one-third octave spectrum. It is found that with the proposed system, the vibration can be effectively captured by the viscous damper and converted to lower frequency-content tremors. The success of this project greatly supports the proposed standard two-stage analysis procedure for mitigating micro-vibration problems in practice. This research extends the use of viscous dampers to a new field.
文摘Micro electro discharge machining (micro EDM) is a feasible way tomanufacture micro structures and has potential application in advanced industrial fields. For therealization of micro EDM, it is necessary to pay careful attention to its equipment design and thedevelopment of process techniques. The present status of research and development of micro EDMequipment and process techniques is overviewed. A micro electro discharge machine incorporated withan inchworm type of micro feed mechanism is introduced, and a micro electro discharge machine fordrilling micro holes suitable to industrial use is also introduced. Some of the machiningexperiments carried out on the micro EDM prototypes are shown and the feasibility of the micro EDMtechnology to practical use is discussed.
基金The project was supported by National Natural Science Foundation of China (Grant No.50171005) the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE. The authors very thank Special Metals Corpora
文摘INCONEL725 is a highly corrosion resistant nickel based alloy capable of being age-hardened to high strength levels. The micro structure observations and the phase identification after a standard heat treatment were investigated. The results show that the precipitation phases include the strengthening phasesγ', γ', and 8 phase, primary carbide phase TiC, as well as M6 C carbide and a little extent MC (mainly TiC) precipitates which nucleate mainly at grain boundaries. An isothermal aging study was carried out on this alloy for up to 10 000 hours at 593℃. This additional aging did not affect the tensile strength. However, micro structures show that the thermal exposure has a little additional effect. With increasing the exposure time, the size of γ' phase slightly increases, almost no change for γ' phase, while M6C carbides precipitated at grain boundaries have an increased and complex tendency on a few grain boundaries. The experimental results illustrate the excellent structure stability of the age-hardenable IN725 at 593℃.
基金The authors would like to thank financial support of National Natural Science Foundation of China(Project No.59901004).
文摘The phase transformation behavior and micro structure of Nb-Ru alloys have been studied by DSC, X-ray diffraction, optical microscopy, transmission electron microscopy (TEM) and high-resolution electron microscopy (HREM). Two-step phase transformation of CsCl (β) →face-centered tetragonal (β)→ monoclinic (β') occurs during cooling from high temperature to room temperature. The lattice parameters of marten-sites of Nb-Ru alloys were found to increase with the increase of Nb content. The martensite variants exhibit triangular self-accommodating morphology, with alternating regular bands inside. The twinning relationship between the sub structural bands was found to be (101) type I mode, and this kind of twinning interface was straight, well-defined and coherent.
基金Project supported by the 973 Program of China (Grant No. 2006CB302900)National Natural Science Foundation of China(Grant No. 50872129)
文摘ZnO micro/nano complex structure films, including reticulate papillary nodes, petal-like and flake-hole, have been self-assembled by a hydrothermal technique at different temperatures without metal catalysts. The wettability of the above film surfaces was modified with a simple coating of heptadecafluorodecyltrimethoxy-silane in toluene. After modifying, the surface of ZnO film grown at 50℃ was converted from superhydrophilic with a water contact angle lower than 5° to superhydrophobic with a water contact angle of 165° Additionally, the surface of reticulate papillary nodes ZnO film grown at 100 ℃ had excellent superhydrophobicity, with a water contact angle of 173° and a sliding angle lower than 2° Furthermore, the water contact angle on the surface of petal-like and flake-hole ZnO films grown at 150℃ and 200℃ were found to be 140° and 120°, respectively. The wettability for the samples was found to depend strongly on the surface morphology which results from the growth temperature.
文摘A Micro Electrical Discharge Machining (MEDM) equipment was developed in this paper,on which the CNC interpolation for 3-axis linkage movement could be realized easily. By this micro-EDM equipment,the fabrication process of microelectrode,micro hole,silicon wafer and complex microstructure was discussed. The process rules of machining efficiency and the relative electrode wear rate as well as the machining mechanism and performance of silicon micro-EDM were also researched. Machining experiments showed that the microelectrode diameter as small as 6 μm and the micro hole with minimum size of 10 μm could be obtained steadily,and the maximum aspect ratios of microelectrode and micro hole were over 25 and 10 respectively. And silicon micro-EDM experiments showed that the micro beam with the aspect ratios over 15 could be obtained easily. And a micro beam with minimum size of 23 μm width on a silicon wafer with 420 μm thickness was achieved. At last,the microstructure machining technology for micro-EDM was also discussed. And a micro-facial sculpture with free space curved surface and size of 1 mm×0.3 mm×0.18 mm was also machined successfully.
文摘O<span>steoporosis is an increasingly prevalent malady of the elderly that is associated with bone fragility and increased risk of fractures. Osteoporosis treatments focus on restoring bone strength and quality. Teriparatide (TPTD) is </span><span>a therapeutic agent that has been shown to increase bone strength by improving the volume and connectivity of trabecular bone. Exercise is also known to have pro-osteogenic effects. Here we used a rat model of severe osteoporosis (ovariectomized and tail-suspension) to evaluate th</span><span>e effects of TPTD, exercise and a combination of TPTD and exercise on the microstructure of trabecular </span><span>bone. TPTD mono-therapy and TPTD combined with exercise treatment significantly increased bone mineral density (BMD) in the whole body</span><span>. </span><span>Micro-computed tomography analysis revealed that </span><span>a combination of exercise and TPTD treatment significantly decreased bone surface to volume and trab</span><span>ecular separation compared with those of the control and exercise groups. Node-strut analysis indicated that exercise or TPTD alone did not affect trabecular bone connectivity. However, the combination of exercise and TPTD treatment significantly decreased measures of tra</span><span>becular bone connectivity (node number) that are consistent with a transition from rod-like to plate-like of trabecular bone microstructures. The combination treatment with exercise and TPTD improved microstructure of trabecular bone in the OVX and tail-suspended rats. These results indicate that combining exercise with TPTD represents a viable means to improve cancellous bone strength in osteoporosis populations.</span>