In this work, the efficiency ofa 1 kWp horizontal-axis wind turbine which is installed on the roof of the engineering building at the University of Salento has been evaluated, by means of CFD (computational fluid dyn...In this work, the efficiency ofa 1 kWp horizontal-axis wind turbine which is installed on the roof of the engineering building at the University of Salento has been evaluated, by means of CFD (computational fluid dynamic) and experimental data. Particularly, the influence of the building on the micro wind turbine performance has been studied and the numerical results (wind velocity fields and turbulence intensity above the building) have been compared with the experimental data collected over a period of three years. The results have shown that horizontal-axis wind turbines suffer from wake effect due to buildings, therefore, best sites in urban area have to be identified by a careful fluid dynamic analysis aimed at evaluating all causes that can reduce significantly the performance of the generator: in fact, building should allow to exploit increased wind intensity, but often this advantage is voided by turbulence phenomena, as in the case under investigation where the measured aerogenerator efficiency is lower than the nominal performance curve. Then, the best site can be found by crossing the contours of wind velocity with the turbulence intensity fields: in this way it is possible to localize an area (best location) where the aerogenerator can give maximum performance.展开更多
Wind energy provides a sustainable solution to the ever-increasing demand for energy.Micro-wind turbines offer a promising solution for low-wind speed,decentralized power generation in urban and remote areas.Earlier r...Wind energy provides a sustainable solution to the ever-increasing demand for energy.Micro-wind turbines offer a promising solution for low-wind speed,decentralized power generation in urban and remote areas.Earlier researchers have explored the design,development,and performance analysis of a micro-wind turbine system tailored for small-scale renewable energy generation.Researchers have investigated various aspects such as aerodynamic considerations,structural integrity,efficiency optimization to ensure reliable and cost-effective operation,blade design,generator selection,and control strategies to enhance the overall performance of the system.The objective of this paper is to provide a comprehensive design and performance review of horizontal and vertical micro-wind turbines.The study begins with an overview of the current landscape of wind energy across the globe and India in particular,highlighting key challenges and opportunities.Numerical and experimental studies were used to validate the designs.Horizontal Axis Wind Turbines(HAWTs)with ducts or shrouds are suitable for microscale and low-speed applications.Researchers investigated the position and location of the turbines to enhance their performance in urban settings.Airflow and airfoil noise produce aerodynamic noise,which is the most significant disadvantage of wind turbines.The findings provide valuable insights for stakeholders interested in advancing micro-wind turbine technology.The highlighted research opportunities may be pursued further to improve the efficiency,reliability,and overall performance of micro-wind turbines.展开更多
文摘In this work, the efficiency ofa 1 kWp horizontal-axis wind turbine which is installed on the roof of the engineering building at the University of Salento has been evaluated, by means of CFD (computational fluid dynamic) and experimental data. Particularly, the influence of the building on the micro wind turbine performance has been studied and the numerical results (wind velocity fields and turbulence intensity above the building) have been compared with the experimental data collected over a period of three years. The results have shown that horizontal-axis wind turbines suffer from wake effect due to buildings, therefore, best sites in urban area have to be identified by a careful fluid dynamic analysis aimed at evaluating all causes that can reduce significantly the performance of the generator: in fact, building should allow to exploit increased wind intensity, but often this advantage is voided by turbulence phenomena, as in the case under investigation where the measured aerogenerator efficiency is lower than the nominal performance curve. Then, the best site can be found by crossing the contours of wind velocity with the turbulence intensity fields: in this way it is possible to localize an area (best location) where the aerogenerator can give maximum performance.
文摘Wind energy provides a sustainable solution to the ever-increasing demand for energy.Micro-wind turbines offer a promising solution for low-wind speed,decentralized power generation in urban and remote areas.Earlier researchers have explored the design,development,and performance analysis of a micro-wind turbine system tailored for small-scale renewable energy generation.Researchers have investigated various aspects such as aerodynamic considerations,structural integrity,efficiency optimization to ensure reliable and cost-effective operation,blade design,generator selection,and control strategies to enhance the overall performance of the system.The objective of this paper is to provide a comprehensive design and performance review of horizontal and vertical micro-wind turbines.The study begins with an overview of the current landscape of wind energy across the globe and India in particular,highlighting key challenges and opportunities.Numerical and experimental studies were used to validate the designs.Horizontal Axis Wind Turbines(HAWTs)with ducts or shrouds are suitable for microscale and low-speed applications.Researchers investigated the position and location of the turbines to enhance their performance in urban settings.Airflow and airfoil noise produce aerodynamic noise,which is the most significant disadvantage of wind turbines.The findings provide valuable insights for stakeholders interested in advancing micro-wind turbine technology.The highlighted research opportunities may be pursued further to improve the efficiency,reliability,and overall performance of micro-wind turbines.