Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.Thi...Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields.展开更多
A new polycrystal model was presented from the viewpoint of polycrystal structure of the billets considering free surface effects.In the model,the billet was divided into three portions,such as free surface portion,tr...A new polycrystal model was presented from the viewpoint of polycrystal structure of the billets considering free surface effects.In the model,the billet was divided into three portions,such as free surface portion,transition portion and internal portion.The grains in free surface portion were considered the single grains,and the anisotropy of the grains was taken into account by introducing grain orientation to explain the inhomogeneous deformation.In the transition portion,the effects of the neighbouring grains were adopted in the model.The grains in the internal portion were considered the polycrystalline material.With the developed model,the upsetting deformation process was simulated by the MSC Superform software.The scatter of the flow stress and inhomogeneous deformation was observed by analysis of the model.The comparisons show that the computational results are good agreed with the experimental results.This means that the presented model is effective.展开更多
Effects of four factors on thin sheet metal flow stress were considered, including grain size d, thickness t, grain number across thickness (t/d ratio) and surface property. Surface model was adopted to quantitative...Effects of four factors on thin sheet metal flow stress were considered, including grain size d, thickness t, grain number across thickness (t/d ratio) and surface property. Surface model was adopted to quantitatively describe the effect of t/d ratio on flow stress for pure copper. It is predicted that when t/d ratio is larger than a critical value, effect of t/d ratio on flow stress can be neglected. Existence of critical t/d ratio changes the Hall-Petch relationship and evolution of flow stress with thickness. A criterion was proposed to determine critical t/d ratio. Then a comprehensive constitutive model was developed to consider all the four factors, with parameters determined by fitting experimental data of high purity Ni. The predicted results show the same tendencies with experiment results. Particularly when t/d ratio decreases, Hall-Petch relationship and evolution of true stress show varied slopes with two transition points.展开更多
An improved social force model based on exit selection is proposed to simulate pedestrians' microscopic behaviors in subway station. The modification lies in considering three factors of spatial distance, occupant...An improved social force model based on exit selection is proposed to simulate pedestrians' microscopic behaviors in subway station. The modification lies in considering three factors of spatial distance, occupant density and exit width. In addition, the problem of pedestrians selecting exit frequently is solved as follows: not changing to other exits in the affected area of one exit, using the probability of remaining preceding exit and invoking function of exit selection after several simulation steps. Pedestrians in subway station have some special characteristics, such as explicit destinations, different familiarities with subway station. Finally, Beijing Zoo Subway Station is taken as an example and the feasibility of the model results is verified through the comparison of the actual data and simulation data. The simulation results show that the improved model can depict the microscopic behaviors of pedestrians in subway station.展开更多
A combined beam model representing the periodicity of the microstructure and micro deformation of 3D woven composites is developed for predicting mechanical properties. The model considers the effects of off axial ten...A combined beam model representing the periodicity of the microstructure and micro deformation of 3D woven composites is developed for predicting mechanical properties. The model considers the effects of off axial tension/compression and bending/shearing couplings as well as the mutual reactions of fiber yarns. The method determining microstructure by using woven parameters is described for a typical 3D woven composite material. An analytical cell, constructed by a minimum periodic section of yarn and interlayer matrix, is adopted. Micro stresses in the cell under in-plane tensile loading are obtained by using the proposed beam model and macro modulus is then obtained by the averaging method. Material tests and a 2D micro FEM analysis are made to evaluate this model. Analyses reveal that micro stress caused by tensile/bending coupling effect is not negligible in the stress analysis.展开更多
This paper studies the trajectory tracking problem of flapping-wing micro aerial vehicles(FWMAVs)in the longitudinal plane.First of all,the kinematics and dynamics of the FWMAV are established,wherein the aerodynamic ...This paper studies the trajectory tracking problem of flapping-wing micro aerial vehicles(FWMAVs)in the longitudinal plane.First of all,the kinematics and dynamics of the FWMAV are established,wherein the aerodynamic force and torque generated by flapping wings and the tail wing are explicitly formulated with respect to the flapping frequency of the wings and the degree of tail wing inclination.To achieve autonomous tracking,an adaptive control scheme is proposed under the hierarchical framework.Specifically,a bounded position controller with hyperbolic tangent functions is designed to produce the desired aerodynamic force,and a pitch command is extracted from the designed position controller.Next,an adaptive attitude controller is designed to track the extracted pitch command,where a radial basis function neural network is introduced to approximate the unknown aerodynamic perturbation torque.Finally,the flapping frequency of the wings and the degree of tail wing inclination are calculated from the designed position and attitude controllers,respectively.In terms of Lyapunov's direct method,it is shown that the tracking errors are bounded and ultimately converge to a small neighborhood around the origin.Simulations are carried out to verify the effectiveness of the proposed control scheme.展开更多
A micro-modeling method (MM) for the quantitative prediction of the shrinkage cavity formation in SGiron castings is proposed. The mathematical models describing the volume changes during the solidification ofspheroid...A micro-modeling method (MM) for the quantitative prediction of the shrinkage cavity formation in SGiron castings is proposed. The mathematical models describing the volume changes during the solidification ofspheroidal graphite cast iron are established based on the models of solidification kinetics. The shrinkage cavityformation of T-shaped SG iron castings is calculated with MM method. The calculated results are compared with theexperimental results. It is shown that the predicted size, shape and distribution of shrinkage cavity by MM methodare in good agreement with the measured results.展开更多
Machining damage occurs on the surface of carbon fiber reinforced polymer (CFRP) composites during processing. In the current simulation model of CFRP, the initial defects on the carbon fiber and the periodic random d...Machining damage occurs on the surface of carbon fiber reinforced polymer (CFRP) composites during processing. In the current simulation model of CFRP, the initial defects on the carbon fiber and the periodic random distribution of the reinforcement phase in the matrix are not considered in detail, which makes the characteristics of the cutting model significantly different from the actual processing conditions. In this paper, a novel three-phase model of carbon fiber/cyanate ester composites is proposed to simulate the machining damage of the composites. The periodic random distribution of the carbon fiber reinforced phase in the matrix was realized using a double perturbation algorithm. To achieve the stochastic distribution of the strength of a single carbon fiber, a novel method that combines the Weibull intensity distribution theory with the Monte Carlo method is presented. The mechanical properties of the cyanate matrix were characterized by fitting the stress-strain curves, and the cohesive zone model was employed to simulate the interface. Based on the model, the machining damage mechanism of the composites was revealed using finite element simulations and by conducting a theoretical analysis. Furthermore, the milling surfaces of the composites were observed using a scanning electron microscope, to verify the accuracy of the simulation results. In this study, the simulations and theoretical analysis of the carbon fiber/cyanate ester composite processing were carried out based on a novel three-phase model, which revealed the material failure and machining damage mechanism more accurately.展开更多
The microstructures of the Zn-27Al alloy after modification, solid-solution treatment, and natural aging were studied. It was clarified why the damping properties of Zn-27Al alloys, after treatment, had advanced most ...The microstructures of the Zn-27Al alloy after modification, solid-solution treatment, and natural aging were studied. It was clarified why the damping properties of Zn-27Al alloys, after treatment, had advanced most on the basis of analyzing the microstructures. Approximate expressions have been educed, which can be used to quantificationally work out the damping of the Zn-27Al alloy on the basis of the micro interface sliding model. By comparing the testing damping properties of the foundry Zn-27Al alloys and the Zn-27Al alloys after modification, solid solution, and natural aging, it was shown that the expressions were rational.展开更多
Over the last decade, computational methods have been intensively applied to a variety of scientific researches and engineering designs. Although the computational fluid dynamics (CFD) method has played a dominant r...Over the last decade, computational methods have been intensively applied to a variety of scientific researches and engineering designs. Although the computational fluid dynamics (CFD) method has played a dominant role in studying and simulating transport phenomena involving fluid flow and heat and mass transfers, in recent years, other numerical methods for the simulations at meso- and micro-scales have also been actively applied to solve the physics of complex flow and fluid-interface interactions. This paper presents a review of recent advances in multi-scale computational simulation of biomimetics related fluid flow problems. The state-of-the-art numerical techniques, such as lattice Boltzmann method (LBM), molecular dynamics (MD), and conventional CFD, applied to different problems such as fish flow, electro-osmosis effect of earthworm motion, and self-cleaning hydrophobic surface, and the numerical approaches are introduced. The new challenging of modelling biomimetics problems in developing the physical conditions of self-clean hydrophobic surfaces is discussed.展开更多
A meso-scale truss network model was developed to predict chloride diffusion in concrete. The model regards concrete as a three-phase composite of mortar matrix, coarse aggregates, and the interfacial transition zone ...A meso-scale truss network model was developed to predict chloride diffusion in concrete. The model regards concrete as a three-phase composite of mortar matrix, coarse aggregates, and the interfacial transition zone (ITZ) between the mortar matrix and the aggregates. The diffusion coefficient of chloride in the mortar and the ITZ can be analytically determined with only the water-to-cement ratio and volume fraction of fine aggregates. Fick's second law of diffusion was used as the governing equation for chloride diffusion in a homogenous medium (e.g., mortar); it was discretized and applied to the truss network model. The solution procedure of the truss network model based on the diffusion law and the meso-scale composite structure of concrete is outlined. Additionally, the dependence of the diffusion coefficient of chloride in the mortar and the ITZ on exposure duration and temperature is taken into account to illustrate their effect on chloride diffusion coefficient. The numerical results show that the exposure duration and environmental temperature play important roles in the diffusion rate of chloride ions in concrete. It is also concluded that the meso-scale truss network model can be applied to chloride transport analysis of damaged (or cracked) concrete.展开更多
Toarcian claystone such as that of the Callovo-Oxfordian is a qualified multiphase material. The claystone samples tested in this study are composed of four main mineral phases: silicates(clay minerals, quartz,feldspa...Toarcian claystone such as that of the Callovo-Oxfordian is a qualified multiphase material. The claystone samples tested in this study are composed of four main mineral phases: silicates(clay minerals, quartz,feldspars, micas)(z86%), sulphides(pyrite)(z3%), carbonates(calcite, dolomite)(z10%) and organic kerogen(z1%). Three sets of measurements of the modulus of deformability were compared as determined in(i) nanoindentation tests with a constant indentation depth of 2 mm,(ii) micro-indentation tests with a constant indentation depth of 20 mm, and(iii) meso-compression tests with a constant displacement of 200 mm. These three experimental methods have already been validated in earlier studies. The main objective of this study is to demonstrate the influence of the scaling effect on the modulus of deformability of the material. Different frequency distributions of the modulus of deformability were obtained at the different sample scales:(i) in nano-indentation tests, the distribution was spread between 15 GPa and 90 GPa and contained one peak at34 GPa and another at 51 GPa;(ii) in the micro-indentation tests, the distribution was spread between 25 GPa and 60 GPa and displayed peaks at 26 GPa and 37 GPa; and(iii) in the meso-compression tests, a narrow frequency distribution was obtained, ranging from 25 GPa to 50 GPa and with a maximum at around 35 GPa.展开更多
The influence of concrete components on projectile penetration is significant.To study the relationship between the equivalent mechanical properties and components of concrete under a penetration load,concrete is simp...The influence of concrete components on projectile penetration is significant.To study the relationship between the equivalent mechanical properties and components of concrete under a penetration load,concrete is simplified as a two-phase composite of coarse aggregate and mortar,and a meso-mechanical model is established,including the equivalent equation of state model,the equivalent confining pressure strength model and the equivalent dynamic tensile strength model,considering shear stress,large deformation and pore compression.Tests of the mechanical properties of mortar,concrete and limestone were conducted;the results show that the equivalent mechanical properties of concrete calculated by the meso-mechanical model are consistent with the test results,and the equivalent mechanical properties of concrete with different volume fractions of coarse aggregate are obtained.Meso-scale and macro-scale numerical simulations of a projectile penetrating into concrete are carried out,the penetration depths obtained by meso-scale and macro-scale numerical simulations are consistent for different volume fractions of coarse aggregate and different velocities of the projectile,which verifies the rationality of the meso-mechanical model.展开更多
Micro-tubes manufactured by hydro-forming techniques have now been widely used in medical and microelectronics applica- tions. One of the difficulties in forming such parts is the control of localized necking in the i...Micro-tubes manufactured by hydro-forming techniques have now been widely used in medical and microelectronics applica- tions. One of the difficulties in forming such parts is the control of localized necking in the initial stages of the deformation/forming process. A lack of microstructural information causes conventional macro-mechanics finite element(FE) tools to break down when used to investigate the localized microstructure evolution and necking encountered in micro-forming. An effort has been made to create an integrated crystal plasticity finite element(CPFE) system that enables micro-forming process simulations to be carried out easily, with the important features in forming micro-parts captured by the model. Based on Voronoi tessellation and probability theory, a virtual GRAIN(VGRAIN) system is created for generating grains and grain boundaries for micro-materials. Numerical procedures are devel- oped to link the physical parameters of a material to the control variables in a Gamma distribution. A script interface is developed so that the virtual microstructure can be input to the commercial FE code, ABAQUS, for mesh generation. A simplified plane strain CPFE modeling technique is developed and used to capture localized thinning and failure features for hydro-forming of micro-tubes. Grains within the tube workpiece, their distributions and orientations are generated automatically by using the VGRAIN system. A set of crystal viscoplasticity constitutive equations are implemented in ABAQUS/Explicit by using the user-defined material subroutine, VUMAT. Lo- calized thinning is analyzed for different microstructures and deformation conditions of the material using the CPFE modeling technique. The research results show that locations of thinning in forming micro-tubes can be random, which are related to microstructure and grain orientations of the material. The proposed CPFE technique can be used to predict the locations of thinning in forming micro-tubes.展开更多
Developing bifunctional catalysts that increase both the OER and ORR kinetics and transport reactants with high efficiency is desirable. Herein, micro–meso-macroporous FeCo-N-C-X(denoted as "MFeCo-N-C-X", X...Developing bifunctional catalysts that increase both the OER and ORR kinetics and transport reactants with high efficiency is desirable. Herein, micro–meso-macroporous FeCo-N-C-X(denoted as "MFeCo-N-C-X", X represents Fe/Co molar ratio in bimetallic zeolite imidazole frameworks FeCo-ZIFs) catalysts derived from hierarchical M-FeCo-ZIFs-X was prepared. The micropores in M-FeCo-N-C-X have strong capability in O2 capture as well as dictate the nucleation and early-stage deposition of Li2O2,the mesopores provided a channel for the electrolyte wetting, and the macroporous structure promoted more available active sites when used as cathode for Li-O2 batteries. More importantly, M-Fe CoN-C-0.2 based cathode showed a high initial capacity(18,750 mAh g-1@0.1 A g-1), good rate capability(7900 m Ah g-1@0.5 A g-1), and cycle stability up to 192 cycles. Interestingly, the FeCo-N-C-0.2 without macropores suffered relatively poorer stability with only 75 cycles, although its discharge capacity was still as high as 17,200 mA h g-1(@0.1 A g-1). The excellent performance attributed to the synergistic contribution of homogeneous Fe, Co nanoparticles and N co-doping carbon frameworks with special micro–meso-macroporous structure. The results showed that hierarchical FeCo-N-C architectures are promising cathode catalysts for Li-O2 batteries.展开更多
In this paper, a cluster model in particle flow code was used to simulate granite specimens after heat treatment under uniaxial compression. The results demonstrated that micro-cracks are randomly distributed in the s...In this paper, a cluster model in particle flow code was used to simulate granite specimens after heat treatment under uniaxial compression. The results demonstrated that micro-cracks are randomly distributed in the specimen when the temperature is below 300?C, and have partial coalescence when the temperature is up to 450?C, then form macro-cracks when the temperature is above 600?C. There is more inter-granular cracking than intra-granular cracking, and their ratio increases with increasing temperature.The micro-cracks are almost constant when the temperature decreases from 900?C to room temperature, except for quartz α–β phase transition temperature(573?C). The fracture evolution process is obviously affected by these cracks, especially at 600–900?C. Elevated temperature leads to easily developed displacement between the grains, and the capacity to store strain energy becomes weaker, corresponding to the plasticity of granite after heat treatment.展开更多
Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the ac...Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the active site hosts, its hostility to electron/mass transfer could lead to the incomplete fulfillment of the catalytic activity. Besides, the formation of inactive metallic Fe particles during the conventional catalyst synthesis could also decrease the active site density and complicate the identification of real active site. Herein, we developed a facial hydrogen etching methodology to yield single site Fe-N-C catalysts featured with micro/mesoporous hierarchical structure. The hydrogen concentration in pyrolysis process was designated to effectively regulate the pore structure and active site density of the resulted catalysts.The optimized sample achieves excellent ORR catalytic performance with an ultralow H2O2 yield(1%)and superb stability over 10,000 cycles. Our finding provides new thoughts for the rational design of hierarchically porous carbon-based materials and highly promising non-precious metal ORR catalysts.展开更多
The Chamba\|Bharmaur syncline located in between Zanskar range in the north and Dhauladhar\|Pirpanjal range in the south , in the Chamba district of Western Himachal Pradesh. The rocks constituting Chamba\|Bharmaur sy...The Chamba\|Bharmaur syncline located in between Zanskar range in the north and Dhauladhar\|Pirpanjal range in the south , in the Chamba district of Western Himachal Pradesh. The rocks constituting Chamba\|Bharmaur syncline belong to Precambrian to Lr. Triassic (Rattan, 1973) and represent the southern extension of the Tethyan facies of the Zanskar Tethys Himalayan sequence (Thakur, 1998). The geological and structural mapping in the Chamba\|Bharmaur syncline reveal that the area comprises of various litho\|units which show imprint of various phases of deformation. Three main phases of deformation DF\-1, DF\-2 and DF\-3 have affected the rocks of the Chamba\|Bharmaur syncline. The earliest recognisable deformational structures of the area are tight isoclinal folds appressed with long drawn out limbs and thickened hinges have experienced buckle shortening of 80%. They have been rendered intrafolial folds in many places; only a few of them show disharmony. The folds initiated in the multilayered sequences are generally controlled in their distribution and wave\|length by more competent members of the sequence.展开更多
基金the National Natural Science Foundation of China(Nos.52374147,42372328,and U23B2091)National Key Research and Development Program of China(No.2023YFC3804200)Xinjiang Uygur Autonomous Region Science and Technology Major Program(No.2023A01002).
文摘Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields.
基金Projects(50835002,50805035)support by the National Natural Science Foundation of ChinaProject(QC08C55)supported by the Natural Science Foundation of Heilongjiang Province,ChinaProject(200802131031)supported by the PhD Programs Foundation of Ministry of Education of China for Young Scholars
文摘A new polycrystal model was presented from the viewpoint of polycrystal structure of the billets considering free surface effects.In the model,the billet was divided into three portions,such as free surface portion,transition portion and internal portion.The grains in free surface portion were considered the single grains,and the anisotropy of the grains was taken into account by introducing grain orientation to explain the inhomogeneous deformation.In the transition portion,the effects of the neighbouring grains were adopted in the model.The grains in the internal portion were considered the polycrystalline material.With the developed model,the upsetting deformation process was simulated by the MSC Superform software.The scatter of the flow stress and inhomogeneous deformation was observed by analysis of the model.The comparisons show that the computational results are good agreed with the experimental results.This means that the presented model is effective.
基金Projects(50835002,50975174,50821003)supported by the National Natural Science Foundation of ChinaProjects(200802480053,20100073110044)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘Effects of four factors on thin sheet metal flow stress were considered, including grain size d, thickness t, grain number across thickness (t/d ratio) and surface property. Surface model was adopted to quantitatively describe the effect of t/d ratio on flow stress for pure copper. It is predicted that when t/d ratio is larger than a critical value, effect of t/d ratio on flow stress can be neglected. Existence of critical t/d ratio changes the Hall-Petch relationship and evolution of flow stress with thickness. A criterion was proposed to determine critical t/d ratio. Then a comprehensive constitutive model was developed to consider all the four factors, with parameters determined by fitting experimental data of high purity Ni. The predicted results show the same tendencies with experiment results. Particularly when t/d ratio decreases, Hall-Petch relationship and evolution of true stress show varied slopes with two transition points.
基金Project(T14JB00200)supported by the Fundamental Research Funds for the Central UniversitiesChina+2 种基金Projects(RCS2012ZZ002RCS2012ZT003)supported by the State Key Laboratory of Rail Traffic Control and SafetyChina
文摘An improved social force model based on exit selection is proposed to simulate pedestrians' microscopic behaviors in subway station. The modification lies in considering three factors of spatial distance, occupant density and exit width. In addition, the problem of pedestrians selecting exit frequently is solved as follows: not changing to other exits in the affected area of one exit, using the probability of remaining preceding exit and invoking function of exit selection after several simulation steps. Pedestrians in subway station have some special characteristics, such as explicit destinations, different familiarities with subway station. Finally, Beijing Zoo Subway Station is taken as an example and the feasibility of the model results is verified through the comparison of the actual data and simulation data. The simulation results show that the improved model can depict the microscopic behaviors of pedestrians in subway station.
文摘A combined beam model representing the periodicity of the microstructure and micro deformation of 3D woven composites is developed for predicting mechanical properties. The model considers the effects of off axial tension/compression and bending/shearing couplings as well as the mutual reactions of fiber yarns. The method determining microstructure by using woven parameters is described for a typical 3D woven composite material. An analytical cell, constructed by a minimum periodic section of yarn and interlayer matrix, is adopted. Micro stresses in the cell under in-plane tensile loading are obtained by using the proposed beam model and macro modulus is then obtained by the averaging method. Material tests and a 2D micro FEM analysis are made to evaluate this model. Analyses reveal that micro stress caused by tensile/bending coupling effect is not negligible in the stress analysis.
基金supported in part by the National Natural Science Foundation of China(61933001,62061160371)Joint Funds of Equipment Pre-Research and Ministry of Education of China(6141A02033339)Beijing Top Discipline for Artificial Intelligent Science and Engineering,University of Science and Technology Beijing。
文摘This paper studies the trajectory tracking problem of flapping-wing micro aerial vehicles(FWMAVs)in the longitudinal plane.First of all,the kinematics and dynamics of the FWMAV are established,wherein the aerodynamic force and torque generated by flapping wings and the tail wing are explicitly formulated with respect to the flapping frequency of the wings and the degree of tail wing inclination.To achieve autonomous tracking,an adaptive control scheme is proposed under the hierarchical framework.Specifically,a bounded position controller with hyperbolic tangent functions is designed to produce the desired aerodynamic force,and a pitch command is extracted from the designed position controller.Next,an adaptive attitude controller is designed to track the extracted pitch command,where a radial basis function neural network is introduced to approximate the unknown aerodynamic perturbation torque.Finally,the flapping frequency of the wings and the degree of tail wing inclination are calculated from the designed position and attitude controllers,respectively.In terms of Lyapunov's direct method,it is shown that the tracking errors are bounded and ultimately converge to a small neighborhood around the origin.Simulations are carried out to verify the effectiveness of the proposed control scheme.
文摘A micro-modeling method (MM) for the quantitative prediction of the shrinkage cavity formation in SGiron castings is proposed. The mathematical models describing the volume changes during the solidification ofspheroidal graphite cast iron are established based on the models of solidification kinetics. The shrinkage cavityformation of T-shaped SG iron castings is calculated with MM method. The calculated results are compared with theexperimental results. It is shown that the predicted size, shape and distribution of shrinkage cavity by MM methodare in good agreement with the measured results.
基金Supported by Research Innovation Fund Project “Research on micro machining mechanism of fiber reinforced composites”(Grant No.HIT.NSRIF.2014055)of Harbin Institute of Technology,China
文摘Machining damage occurs on the surface of carbon fiber reinforced polymer (CFRP) composites during processing. In the current simulation model of CFRP, the initial defects on the carbon fiber and the periodic random distribution of the reinforcement phase in the matrix are not considered in detail, which makes the characteristics of the cutting model significantly different from the actual processing conditions. In this paper, a novel three-phase model of carbon fiber/cyanate ester composites is proposed to simulate the machining damage of the composites. The periodic random distribution of the carbon fiber reinforced phase in the matrix was realized using a double perturbation algorithm. To achieve the stochastic distribution of the strength of a single carbon fiber, a novel method that combines the Weibull intensity distribution theory with the Monte Carlo method is presented. The mechanical properties of the cyanate matrix were characterized by fitting the stress-strain curves, and the cohesive zone model was employed to simulate the interface. Based on the model, the machining damage mechanism of the composites was revealed using finite element simulations and by conducting a theoretical analysis. Furthermore, the milling surfaces of the composites were observed using a scanning electron microscope, to verify the accuracy of the simulation results. In this study, the simulations and theoretical analysis of the carbon fiber/cyanate ester composite processing were carried out based on a novel three-phase model, which revealed the material failure and machining damage mechanism more accurately.
文摘The microstructures of the Zn-27Al alloy after modification, solid-solution treatment, and natural aging were studied. It was clarified why the damping properties of Zn-27Al alloys, after treatment, had advanced most on the basis of analyzing the microstructures. Approximate expressions have been educed, which can be used to quantificationally work out the damping of the Zn-27Al alloy on the basis of the micro interface sliding model. By comparing the testing damping properties of the foundry Zn-27Al alloys and the Zn-27Al alloys after modification, solid solution, and natural aging, it was shown that the expressions were rational.
文摘Over the last decade, computational methods have been intensively applied to a variety of scientific researches and engineering designs. Although the computational fluid dynamics (CFD) method has played a dominant role in studying and simulating transport phenomena involving fluid flow and heat and mass transfers, in recent years, other numerical methods for the simulations at meso- and micro-scales have also been actively applied to solve the physics of complex flow and fluid-interface interactions. This paper presents a review of recent advances in multi-scale computational simulation of biomimetics related fluid flow problems. The state-of-the-art numerical techniques, such as lattice Boltzmann method (LBM), molecular dynamics (MD), and conventional CFD, applied to different problems such as fish flow, electro-osmosis effect of earthworm motion, and self-cleaning hydrophobic surface, and the numerical approaches are introduced. The new challenging of modelling biomimetics problems in developing the physical conditions of self-clean hydrophobic surfaces is discussed.
基金supported by the Key Project of the Chinese Ministry of Education (Grant No. 109046)the Center for Concrete Corea, Korea of the Yonsei University of Korea, the Grant-in-Aid for Scientific Research from the Japanese Government (A) (Grant No. 19206048)
文摘A meso-scale truss network model was developed to predict chloride diffusion in concrete. The model regards concrete as a three-phase composite of mortar matrix, coarse aggregates, and the interfacial transition zone (ITZ) between the mortar matrix and the aggregates. The diffusion coefficient of chloride in the mortar and the ITZ can be analytically determined with only the water-to-cement ratio and volume fraction of fine aggregates. Fick's second law of diffusion was used as the governing equation for chloride diffusion in a homogenous medium (e.g., mortar); it was discretized and applied to the truss network model. The solution procedure of the truss network model based on the diffusion law and the meso-scale composite structure of concrete is outlined. Additionally, the dependence of the diffusion coefficient of chloride in the mortar and the ITZ on exposure duration and temperature is taken into account to illustrate their effect on chloride diffusion coefficient. The numerical results show that the exposure duration and environmental temperature play important roles in the diffusion rate of chloride ions in concrete. It is also concluded that the meso-scale truss network model can be applied to chloride transport analysis of damaged (or cracked) concrete.
文摘Toarcian claystone such as that of the Callovo-Oxfordian is a qualified multiphase material. The claystone samples tested in this study are composed of four main mineral phases: silicates(clay minerals, quartz,feldspars, micas)(z86%), sulphides(pyrite)(z3%), carbonates(calcite, dolomite)(z10%) and organic kerogen(z1%). Three sets of measurements of the modulus of deformability were compared as determined in(i) nanoindentation tests with a constant indentation depth of 2 mm,(ii) micro-indentation tests with a constant indentation depth of 20 mm, and(iii) meso-compression tests with a constant displacement of 200 mm. These three experimental methods have already been validated in earlier studies. The main objective of this study is to demonstrate the influence of the scaling effect on the modulus of deformability of the material. Different frequency distributions of the modulus of deformability were obtained at the different sample scales:(i) in nano-indentation tests, the distribution was spread between 15 GPa and 90 GPa and contained one peak at34 GPa and another at 51 GPa;(ii) in the micro-indentation tests, the distribution was spread between 25 GPa and 60 GPa and displayed peaks at 26 GPa and 37 GPa; and(iii) in the meso-compression tests, a narrow frequency distribution was obtained, ranging from 25 GPa to 50 GPa and with a maximum at around 35 GPa.
基金supported by the National Natural Science Foundation of China [grant number 51278250]
文摘The influence of concrete components on projectile penetration is significant.To study the relationship between the equivalent mechanical properties and components of concrete under a penetration load,concrete is simplified as a two-phase composite of coarse aggregate and mortar,and a meso-mechanical model is established,including the equivalent equation of state model,the equivalent confining pressure strength model and the equivalent dynamic tensile strength model,considering shear stress,large deformation and pore compression.Tests of the mechanical properties of mortar,concrete and limestone were conducted;the results show that the equivalent mechanical properties of concrete calculated by the meso-mechanical model are consistent with the test results,and the equivalent mechanical properties of concrete with different volume fractions of coarse aggregate are obtained.Meso-scale and macro-scale numerical simulations of a projectile penetrating into concrete are carried out,the penetration depths obtained by meso-scale and macro-scale numerical simulations are consistent for different volume fractions of coarse aggregate and different velocities of the projectile,which verifies the rationality of the meso-mechanical model.
基金supported by the EuropeanFP6-IP Project"Integration of Manufacturing Systems for Mass-manufacture of Miniature/Micro-Products(MASMICRO)"
文摘Micro-tubes manufactured by hydro-forming techniques have now been widely used in medical and microelectronics applica- tions. One of the difficulties in forming such parts is the control of localized necking in the initial stages of the deformation/forming process. A lack of microstructural information causes conventional macro-mechanics finite element(FE) tools to break down when used to investigate the localized microstructure evolution and necking encountered in micro-forming. An effort has been made to create an integrated crystal plasticity finite element(CPFE) system that enables micro-forming process simulations to be carried out easily, with the important features in forming micro-parts captured by the model. Based on Voronoi tessellation and probability theory, a virtual GRAIN(VGRAIN) system is created for generating grains and grain boundaries for micro-materials. Numerical procedures are devel- oped to link the physical parameters of a material to the control variables in a Gamma distribution. A script interface is developed so that the virtual microstructure can be input to the commercial FE code, ABAQUS, for mesh generation. A simplified plane strain CPFE modeling technique is developed and used to capture localized thinning and failure features for hydro-forming of micro-tubes. Grains within the tube workpiece, their distributions and orientations are generated automatically by using the VGRAIN system. A set of crystal viscoplasticity constitutive equations are implemented in ABAQUS/Explicit by using the user-defined material subroutine, VUMAT. Lo- calized thinning is analyzed for different microstructures and deformation conditions of the material using the CPFE modeling technique. The research results show that locations of thinning in forming micro-tubes can be random, which are related to microstructure and grain orientations of the material. The proposed CPFE technique can be used to predict the locations of thinning in forming micro-tubes.
基金sponsored by the National Natural Science Foundation of China(21475021 and 21427807)the Fundamental Research Funds for the Central Universities(2242017 K41023)
文摘Developing bifunctional catalysts that increase both the OER and ORR kinetics and transport reactants with high efficiency is desirable. Herein, micro–meso-macroporous FeCo-N-C-X(denoted as "MFeCo-N-C-X", X represents Fe/Co molar ratio in bimetallic zeolite imidazole frameworks FeCo-ZIFs) catalysts derived from hierarchical M-FeCo-ZIFs-X was prepared. The micropores in M-FeCo-N-C-X have strong capability in O2 capture as well as dictate the nucleation and early-stage deposition of Li2O2,the mesopores provided a channel for the electrolyte wetting, and the macroporous structure promoted more available active sites when used as cathode for Li-O2 batteries. More importantly, M-Fe CoN-C-0.2 based cathode showed a high initial capacity(18,750 mAh g-1@0.1 A g-1), good rate capability(7900 m Ah g-1@0.5 A g-1), and cycle stability up to 192 cycles. Interestingly, the FeCo-N-C-0.2 without macropores suffered relatively poorer stability with only 75 cycles, although its discharge capacity was still as high as 17,200 mA h g-1(@0.1 A g-1). The excellent performance attributed to the synergistic contribution of homogeneous Fe, Co nanoparticles and N co-doping carbon frameworks with special micro–meso-macroporous structure. The results showed that hierarchical FeCo-N-C architectures are promising cathode catalysts for Li-O2 batteries.
基金supported by the National Natural Science Foundation of Jiangsu Province of China for Distinguished Young Scholars (Grant BK20150005)the Fundamental Research Funds for the Central Universities (China University of Mining and Technology) (Grant 2014XT03)
文摘In this paper, a cluster model in particle flow code was used to simulate granite specimens after heat treatment under uniaxial compression. The results demonstrated that micro-cracks are randomly distributed in the specimen when the temperature is below 300?C, and have partial coalescence when the temperature is up to 450?C, then form macro-cracks when the temperature is above 600?C. There is more inter-granular cracking than intra-granular cracking, and their ratio increases with increasing temperature.The micro-cracks are almost constant when the temperature decreases from 900?C to room temperature, except for quartz α–β phase transition temperature(573?C). The fracture evolution process is obviously affected by these cracks, especially at 600–900?C. Elevated temperature leads to easily developed displacement between the grains, and the capacity to store strain energy becomes weaker, corresponding to the plasticity of granite after heat treatment.
基金supported by the National Natural Science Foundation of China(21633008,21433003,U1601211,21733004)National Science and Technology Major Project(2016YFB0101202)+1 种基金Jilin Province Science and Technology Development Program(20150101066JC,20160622037JC,20170203003SF,20170520150JH)Hundred Talents Program of Chinese Academy of Sciences and the Recruitment Program of Foreign Experts(WQ20122200077)
文摘Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the active site hosts, its hostility to electron/mass transfer could lead to the incomplete fulfillment of the catalytic activity. Besides, the formation of inactive metallic Fe particles during the conventional catalyst synthesis could also decrease the active site density and complicate the identification of real active site. Herein, we developed a facial hydrogen etching methodology to yield single site Fe-N-C catalysts featured with micro/mesoporous hierarchical structure. The hydrogen concentration in pyrolysis process was designated to effectively regulate the pore structure and active site density of the resulted catalysts.The optimized sample achieves excellent ORR catalytic performance with an ultralow H2O2 yield(1%)and superb stability over 10,000 cycles. Our finding provides new thoughts for the rational design of hierarchically porous carbon-based materials and highly promising non-precious metal ORR catalysts.
文摘The Chamba\|Bharmaur syncline located in between Zanskar range in the north and Dhauladhar\|Pirpanjal range in the south , in the Chamba district of Western Himachal Pradesh. The rocks constituting Chamba\|Bharmaur syncline belong to Precambrian to Lr. Triassic (Rattan, 1973) and represent the southern extension of the Tethyan facies of the Zanskar Tethys Himalayan sequence (Thakur, 1998). The geological and structural mapping in the Chamba\|Bharmaur syncline reveal that the area comprises of various litho\|units which show imprint of various phases of deformation. Three main phases of deformation DF\-1, DF\-2 and DF\-3 have affected the rocks of the Chamba\|Bharmaur syncline. The earliest recognisable deformational structures of the area are tight isoclinal folds appressed with long drawn out limbs and thickened hinges have experienced buckle shortening of 80%. They have been rendered intrafolial folds in many places; only a few of them show disharmony. The folds initiated in the multilayered sequences are generally controlled in their distribution and wave\|length by more competent members of the sequence.