期刊文献+
共找到4,395篇文章
< 1 2 220 >
每页显示 20 50 100
Effect of dry-wet cycles on dynamic properties and microstructures of sandstone:Experiments and modelling
1
作者 Hai Pu Qingyu Yi +3 位作者 Andrey P.Jivkov Zhengfu Bian Weiqiang Chen Jiangyu Wu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期655-679,共25页
Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.Thi... Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields. 展开更多
关键词 Underground pumped storage power plant Dry-wet cycles Split Hopkinson pressure bar Macro and micro properties FEM-DEM coupling model Damage characterization
下载PDF
Polycrystalline model for FE-simulation of micro forming processes 被引量:3
2
作者 王春举 郭斌 单德彬 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第6期1362-1366,共5页
A new polycrystal model was presented from the viewpoint of polycrystal structure of the billets considering free surface effects.In the model,the billet was divided into three portions,such as free surface portion,tr... A new polycrystal model was presented from the viewpoint of polycrystal structure of the billets considering free surface effects.In the model,the billet was divided into three portions,such as free surface portion,transition portion and internal portion.The grains in free surface portion were considered the single grains,and the anisotropy of the grains was taken into account by introducing grain orientation to explain the inhomogeneous deformation.In the transition portion,the effects of the neighbouring grains were adopted in the model.The grains in the internal portion were considered the polycrystalline material.With the developed model,the upsetting deformation process was simulated by the MSC Superform software.The scatter of the flow stress and inhomogeneous deformation was observed by analysis of the model.The comparisons show that the computational results are good agreed with the experimental results.This means that the presented model is effective. 展开更多
关键词 micro forming size effect polycrystal model inhomogeneous deformation
下载PDF
Constitutive model for thin sheet metal with one or several grains across thickness in micro-forming
3
作者 王倩 董湘怀 +2 位作者 章海明 李河宗 申昱 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1428-1434,共7页
Effects of four factors on thin sheet metal flow stress were considered, including grain size d, thickness t, grain number across thickness (t/d ratio) and surface property. Surface model was adopted to quantitative... Effects of four factors on thin sheet metal flow stress were considered, including grain size d, thickness t, grain number across thickness (t/d ratio) and surface property. Surface model was adopted to quantitatively describe the effect of t/d ratio on flow stress for pure copper. It is predicted that when t/d ratio is larger than a critical value, effect of t/d ratio on flow stress can be neglected. Existence of critical t/d ratio changes the Hall-Petch relationship and evolution of flow stress with thickness. A criterion was proposed to determine critical t/d ratio. Then a comprehensive constitutive model was developed to consider all the four factors, with parameters determined by fitting experimental data of high purity Ni. The predicted results show the same tendencies with experiment results. Particularly when t/d ratio decreases, Hall-Petch relationship and evolution of true stress show varied slopes with two transition points. 展开更多
关键词 constitutive model flow stress micro forming size effect
下载PDF
地形影响的水平相关模型在CMA-MESO中的应用
4
作者 庄照荣 李兴良 +1 位作者 王瑞春 高郁东 《应用气象学报》 CSCD 北大核心 2024年第4期414-428,共15页
在背景误差水平相关模型中引入地形作用,研究复杂地形下近地面观测资料同化对分析和预报的影响。CMAMESO三维变分系统中背景误差水平相关关系采用高斯相关模型描述,观测信息在高度追随坐标的模式面上各向同性传播。然而在地形复杂的近... 在背景误差水平相关模型中引入地形作用,研究复杂地形下近地面观测资料同化对分析和预报的影响。CMAMESO三维变分系统中背景误差水平相关关系采用高斯相关模型描述,观测信息在高度追随坐标的模式面上各向同性传播。然而在地形复杂的近地面层,观测信息传播受到山脉阻挡,因而其背景误差协方差非均匀且各向异性,观测信息传播应随地形高度变化。为此,采用美国国家气象中心NMC方法统计复杂地形下背景误差水平相关结构,构建包含地形高度和地形梯度影响的高斯相关模型,并将改进的水平相关模型应用于CMA-MESO三维变分分析。理想试验表明:考虑地形项的水平相关模型方案使观测信息以随地形高度变化的各向异性形式传播,越过大地形观测信息影响明显减弱,分析增量更加合理。我国北方一次强降水过程分析预报试验表明:随地形高度变化的水平相关模型方案使地面观测信息各向异性传播,削弱了大地形处近地面的分析增量,对降水预报略有正贡献。针对华东地区降水过程进行5 d逐小时快速更新分析预报循环试验结果表明,随地形变化的水平相关模型方案对10 m风场和24 h时效内降水预报有正贡献。 展开更多
关键词 背景误差 水平相关模型 地形 三维变分 CMA-meso
下载PDF
Improved social force model based on exit selection for microscopic pedestrian simulation in subway station 被引量:4
5
作者 郑勋 李海鹰 +2 位作者 孟令云 许心越 陈旭 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第11期4490-4497,共8页
An improved social force model based on exit selection is proposed to simulate pedestrians' microscopic behaviors in subway station. The modification lies in considering three factors of spatial distance, occupant... An improved social force model based on exit selection is proposed to simulate pedestrians' microscopic behaviors in subway station. The modification lies in considering three factors of spatial distance, occupant density and exit width. In addition, the problem of pedestrians selecting exit frequently is solved as follows: not changing to other exits in the affected area of one exit, using the probability of remaining preceding exit and invoking function of exit selection after several simulation steps. Pedestrians in subway station have some special characteristics, such as explicit destinations, different familiarities with subway station. Finally, Beijing Zoo Subway Station is taken as an example and the feasibility of the model results is verified through the comparison of the actual data and simulation data. The simulation results show that the improved model can depict the microscopic behaviors of pedestrians in subway station. 展开更多
关键词 EXIT SELECTION SOCIAL FORCE model EXIT WIDTH micro
下载PDF
Micro Mechanical Model of 3D Woven Composites 被引量:9
6
作者 周储伟 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第1期40-46,共7页
A combined beam model representing the periodicity of the microstructure and micro deformation of 3D woven composites is developed for predicting mechanical properties. The model considers the effects of off axial ten... A combined beam model representing the periodicity of the microstructure and micro deformation of 3D woven composites is developed for predicting mechanical properties. The model considers the effects of off axial tension/compression and bending/shearing couplings as well as the mutual reactions of fiber yarns. The method determining microstructure by using woven parameters is described for a typical 3D woven composite material. An analytical cell, constructed by a minimum periodic section of yarn and interlayer matrix, is adopted. Micro stresses in the cell under in-plane tensile loading are obtained by using the proposed beam model and macro modulus is then obtained by the averaging method. Material tests and a 2D micro FEM analysis are made to evaluate this model. Analyses reveal that micro stress caused by tensile/bending coupling effect is not negligible in the stress analysis. 展开更多
关键词 3D woven composites micro mechanics bending/shear coupling off axial effect combined beam model
下载PDF
Modeling and Trajectory Tracking Control for Flapping-Wing Micro Aerial Vehicles 被引量:22
7
作者 Wei He Xinxing Mu +1 位作者 Liang Zhang Yao Zou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第1期148-156,共9页
This paper studies the trajectory tracking problem of flapping-wing micro aerial vehicles(FWMAVs)in the longitudinal plane.First of all,the kinematics and dynamics of the FWMAV are established,wherein the aerodynamic ... This paper studies the trajectory tracking problem of flapping-wing micro aerial vehicles(FWMAVs)in the longitudinal plane.First of all,the kinematics and dynamics of the FWMAV are established,wherein the aerodynamic force and torque generated by flapping wings and the tail wing are explicitly formulated with respect to the flapping frequency of the wings and the degree of tail wing inclination.To achieve autonomous tracking,an adaptive control scheme is proposed under the hierarchical framework.Specifically,a bounded position controller with hyperbolic tangent functions is designed to produce the desired aerodynamic force,and a pitch command is extracted from the designed position controller.Next,an adaptive attitude controller is designed to track the extracted pitch command,where a radial basis function neural network is introduced to approximate the unknown aerodynamic perturbation torque.Finally,the flapping frequency of the wings and the degree of tail wing inclination are calculated from the designed position and attitude controllers,respectively.In terms of Lyapunov's direct method,it is shown that the tracking errors are bounded and ultimately converge to a small neighborhood around the origin.Simulations are carried out to verify the effectiveness of the proposed control scheme. 展开更多
关键词 Flapping-wing micro aerial vehicles(FWMAVs) modelING neural networks trajectory tracking
下载PDF
Numerical Simulation of Shrinkage Cavity Formation in Spheroidal Graphite Iron Castings Based on Micro Modeling 被引量:5
8
作者 Wenzhen Li Baicheng Liu Shantong Jin (Metallurgy Engineering School, University of Science and Technology Beijing, Beijing 100083, China)(Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1998年第1期9-12,共4页
A micro-modeling method (MM) for the quantitative prediction of the shrinkage cavity formation in SGiron castings is proposed. The mathematical models describing the volume changes during the solidification ofspheroid... A micro-modeling method (MM) for the quantitative prediction of the shrinkage cavity formation in SGiron castings is proposed. The mathematical models describing the volume changes during the solidification ofspheroidal graphite cast iron are established based on the models of solidification kinetics. The shrinkage cavityformation of T-shaped SG iron castings is calculated with MM method. The calculated results are compared with theexperimental results. It is shown that the predicted size, shape and distribution of shrinkage cavity by MM methodare in good agreement with the measured results. 展开更多
关键词 SOLIDIFICATION SHRINKAGE numerical simulation micro modeling spheroidal graphite cast iron
下载PDF
Micro Model of Carbon Fiber/Cyanate Ester Composites and Analysis of Machining Damage Mechanism 被引量:3
9
作者 Haitao Liu Jie Lin +1 位作者 Yazhou Sun Jinyang Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第3期198-208,共11页
Machining damage occurs on the surface of carbon fiber reinforced polymer (CFRP) composites during processing. In the current simulation model of CFRP, the initial defects on the carbon fiber and the periodic random d... Machining damage occurs on the surface of carbon fiber reinforced polymer (CFRP) composites during processing. In the current simulation model of CFRP, the initial defects on the carbon fiber and the periodic random distribution of the reinforcement phase in the matrix are not considered in detail, which makes the characteristics of the cutting model significantly different from the actual processing conditions. In this paper, a novel three-phase model of carbon fiber/cyanate ester composites is proposed to simulate the machining damage of the composites. The periodic random distribution of the carbon fiber reinforced phase in the matrix was realized using a double perturbation algorithm. To achieve the stochastic distribution of the strength of a single carbon fiber, a novel method that combines the Weibull intensity distribution theory with the Monte Carlo method is presented. The mechanical properties of the cyanate matrix were characterized by fitting the stress-strain curves, and the cohesive zone model was employed to simulate the interface. Based on the model, the machining damage mechanism of the composites was revealed using finite element simulations and by conducting a theoretical analysis. Furthermore, the milling surfaces of the composites were observed using a scanning electron microscope, to verify the accuracy of the simulation results. In this study, the simulations and theoretical analysis of the carbon fiber/cyanate ester composite processing were carried out based on a novel three-phase model, which revealed the material failure and machining damage mechanism more accurately. 展开更多
关键词 Carbon fiber reinforced polymer COMPOSITES micro simulation model MACHINING damage mechanism MILLING and observation experiment Theoretical ANALYSIS
下载PDF
CALCULATION OF THE DAMPING OF THE Zn-27Al ALLOY BASED ON THE MICRO INTERFACE SLIDING MODEL 被引量:2
10
作者 Y.Z. Zhao Q. Gao Y.C. Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第3期228-234,共7页
The microstructures of the Zn-27Al alloy after modification, solid-solution treatment, and natural aging were studied. It was clarified why the damping properties of Zn-27Al alloys, after treatment, had advanced most ... The microstructures of the Zn-27Al alloy after modification, solid-solution treatment, and natural aging were studied. It was clarified why the damping properties of Zn-27Al alloys, after treatment, had advanced most on the basis of analyzing the microstructures. Approximate expressions have been educed, which can be used to quantificationally work out the damping of the Zn-27Al alloy on the basis of the micro interface sliding model. By comparing the testing damping properties of the foundry Zn-27Al alloys and the Zn-27Al alloys after modification, solid solution, and natural aging, it was shown that the expressions were rational. 展开更多
关键词 MODIFICATION solid solution and aging damping micromechanism micro interface sliding model
下载PDF
Recent Advances in Computational Simulation of Macro-,Meso-,and Micro-Scale Biomimetics Related Fluid Flow Problems 被引量:5
11
作者 Y. Y. Yan 《Journal of Bionic Engineering》 SCIE EI CSCD 2007年第2期97-107,共11页
Over the last decade, computational methods have been intensively applied to a variety of scientific researches and engineering designs. Although the computational fluid dynamics (CFD) method has played a dominant r... Over the last decade, computational methods have been intensively applied to a variety of scientific researches and engineering designs. Although the computational fluid dynamics (CFD) method has played a dominant role in studying and simulating transport phenomena involving fluid flow and heat and mass transfers, in recent years, other numerical methods for the simulations at meso- and micro-scales have also been actively applied to solve the physics of complex flow and fluid-interface interactions. This paper presents a review of recent advances in multi-scale computational simulation of biomimetics related fluid flow problems. The state-of-the-art numerical techniques, such as lattice Boltzmann method (LBM), molecular dynamics (MD), and conventional CFD, applied to different problems such as fish flow, electro-osmosis effect of earthworm motion, and self-cleaning hydrophobic surface, and the numerical approaches are introduced. The new challenging of modelling biomimetics problems in developing the physical conditions of self-clean hydrophobic surfaces is discussed. 展开更多
关键词 biomimetics computational simulation macro- meso- micro-SCALE HYDROPHOBIC SURFACES
下载PDF
Meso-scale modeling of chloride diffusion in concrete with consideration of effects of time and temperature 被引量:4
12
作者 Li-cheng WANG Tamon UEDA 《Water Science and Engineering》 EI CAS 2009年第3期58-70,共13页
A meso-scale truss network model was developed to predict chloride diffusion in concrete. The model regards concrete as a three-phase composite of mortar matrix, coarse aggregates, and the interfacial transition zone ... A meso-scale truss network model was developed to predict chloride diffusion in concrete. The model regards concrete as a three-phase composite of mortar matrix, coarse aggregates, and the interfacial transition zone (ITZ) between the mortar matrix and the aggregates. The diffusion coefficient of chloride in the mortar and the ITZ can be analytically determined with only the water-to-cement ratio and volume fraction of fine aggregates. Fick's second law of diffusion was used as the governing equation for chloride diffusion in a homogenous medium (e.g., mortar); it was discretized and applied to the truss network model. The solution procedure of the truss network model based on the diffusion law and the meso-scale composite structure of concrete is outlined. Additionally, the dependence of the diffusion coefficient of chloride in the mortar and the ITZ on exposure duration and temperature is taken into account to illustrate their effect on chloride diffusion coefficient. The numerical results show that the exposure duration and environmental temperature play important roles in the diffusion rate of chloride ions in concrete. It is also concluded that the meso-scale truss network model can be applied to chloride transport analysis of damaged (or cracked) concrete. 展开更多
关键词 meso-scale modeling CONCRETE chloride diffusion truss network model
下载PDF
CMA-MESO模式对“21·7”河南特大暴雨的预报评估与误差分析 被引量:1
13
作者 万子为 孙思远 +1 位作者 赵滨 陈起英 《气象》 CSCD 北大核心 2024年第1期33-47,共15页
为分析CMA-MESO模式对2021年7月19—21日河南特大暴雨的预报性能,除了常规观测资料,还利用雷达和卫星非常规观测资料,对模拟回波和云产品开展传统和新型空间检验,以揭示对流风暴和中尺度对流系统(MCS,基于卫星红外通道)的模式预报偏差细... 为分析CMA-MESO模式对2021年7月19—21日河南特大暴雨的预报性能,除了常规观测资料,还利用雷达和卫星非常规观测资料,对模拟回波和云产品开展传统和新型空间检验,以揭示对流风暴和中尺度对流系统(MCS,基于卫星红外通道)的模式预报偏差细节,并从降水形成的水汽、动力、触发和维持机制等角度分析模式误差产生的原因。结果表明:模式能较好预报雨带形态、弱回波持续时间以及主要降水发生前期和后期MCS的面积和强度演变趋势;模式偏差主要体现在低估了降水强度且未报出郑州站极端小时降水,错报主雨带小时降水演变,严重低估了对流风暴和强对流风暴的持续时间,未能报出午后MCS面积陡增的变化趋势且MCS位置预报偏西、偏北;模式降水偏差的原因主要在于水汽的模拟,模式水汽垂直分布不合理,对台风烟花和查帕卡的水汽输送均偏弱,而水汽输送不足的根源是低空急流偏弱和超低空急流脉动不足。另外,模式未能在郑州站附近预报出稳定少动的地面中尺度辐合线,加之大气层结不稳定度不足和对流不稳定能量偏低,使得对流发展不够旺盛,最终导致降水预报不足。 展开更多
关键词 CMA-meso 极端暴雨 模式评估 误差分析
下载PDF
Elastic modulus of claystone evaluated by nano-/micro-indentation tests and meso-compression tests 被引量:5
14
作者 Christophe Auvray Noémie Lafrance Danièle Bartier 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第1期84-91,共8页
Toarcian claystone such as that of the Callovo-Oxfordian is a qualified multiphase material. The claystone samples tested in this study are composed of four main mineral phases: silicates(clay minerals, quartz,feldspa... Toarcian claystone such as that of the Callovo-Oxfordian is a qualified multiphase material. The claystone samples tested in this study are composed of four main mineral phases: silicates(clay minerals, quartz,feldspars, micas)(z86%), sulphides(pyrite)(z3%), carbonates(calcite, dolomite)(z10%) and organic kerogen(z1%). Three sets of measurements of the modulus of deformability were compared as determined in(i) nanoindentation tests with a constant indentation depth of 2 mm,(ii) micro-indentation tests with a constant indentation depth of 20 mm, and(iii) meso-compression tests with a constant displacement of 200 mm. These three experimental methods have already been validated in earlier studies. The main objective of this study is to demonstrate the influence of the scaling effect on the modulus of deformability of the material. Different frequency distributions of the modulus of deformability were obtained at the different sample scales:(i) in nano-indentation tests, the distribution was spread between 15 GPa and 90 GPa and contained one peak at34 GPa and another at 51 GPa;(ii) in the micro-indentation tests, the distribution was spread between 25 GPa and 60 GPa and displayed peaks at 26 GPa and 37 GPa; and(iii) in the meso-compression tests, a narrow frequency distribution was obtained, ranging from 25 GPa to 50 GPa and with a maximum at around 35 GPa. 展开更多
关键词 Claystone Elastic modulus Scaling effect Nano-and micro-indentation meso-compression tests Multi-scale mechanical tests
下载PDF
Meso-mechanical model of concrete under a penetration load 被引量:2
15
作者 Cheng Wu Wenbin Li Xiaojun Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第6期936-948,共13页
The influence of concrete components on projectile penetration is significant.To study the relationship between the equivalent mechanical properties and components of concrete under a penetration load,concrete is simp... The influence of concrete components on projectile penetration is significant.To study the relationship between the equivalent mechanical properties and components of concrete under a penetration load,concrete is simplified as a two-phase composite of coarse aggregate and mortar,and a meso-mechanical model is established,including the equivalent equation of state model,the equivalent confining pressure strength model and the equivalent dynamic tensile strength model,considering shear stress,large deformation and pore compression.Tests of the mechanical properties of mortar,concrete and limestone were conducted;the results show that the equivalent mechanical properties of concrete calculated by the meso-mechanical model are consistent with the test results,and the equivalent mechanical properties of concrete with different volume fractions of coarse aggregate are obtained.Meso-scale and macro-scale numerical simulations of a projectile penetrating into concrete are carried out,the penetration depths obtained by meso-scale and macro-scale numerical simulations are consistent for different volume fractions of coarse aggregate and different velocities of the projectile,which verifies the rationality of the meso-mechanical model. 展开更多
关键词 meso-mechanical Inclusion model CONCRETE PENETRATION PROJECTILE
下载PDF
Crystal Plasticity Finite Element Process Modeling for Hydro-forming Micro-tubular Components 被引量:4
16
作者 ZHUANG Weimin WANG Shiwen +1 位作者 BALINT Daniel LIN Jianguo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第1期78-83,共6页
Micro-tubes manufactured by hydro-forming techniques have now been widely used in medical and microelectronics applica- tions. One of the difficulties in forming such parts is the control of localized necking in the i... Micro-tubes manufactured by hydro-forming techniques have now been widely used in medical and microelectronics applica- tions. One of the difficulties in forming such parts is the control of localized necking in the initial stages of the deformation/forming process. A lack of microstructural information causes conventional macro-mechanics finite element(FE) tools to break down when used to investigate the localized microstructure evolution and necking encountered in micro-forming. An effort has been made to create an integrated crystal plasticity finite element(CPFE) system that enables micro-forming process simulations to be carried out easily, with the important features in forming micro-parts captured by the model. Based on Voronoi tessellation and probability theory, a virtual GRAIN(VGRAIN) system is created for generating grains and grain boundaries for micro-materials. Numerical procedures are devel- oped to link the physical parameters of a material to the control variables in a Gamma distribution. A script interface is developed so that the virtual microstructure can be input to the commercial FE code, ABAQUS, for mesh generation. A simplified plane strain CPFE modeling technique is developed and used to capture localized thinning and failure features for hydro-forming of micro-tubes. Grains within the tube workpiece, their distributions and orientations are generated automatically by using the VGRAIN system. A set of crystal viscoplasticity constitutive equations are implemented in ABAQUS/Explicit by using the user-defined material subroutine, VUMAT. Lo- calized thinning is analyzed for different microstructures and deformation conditions of the material using the CPFE modeling technique. The research results show that locations of thinning in forming micro-tubes can be random, which are related to microstructure and grain orientations of the material. The proposed CPFE technique can be used to predict the locations of thinning in forming micro-tubes. 展开更多
关键词 micro-mechanics modeling micro-FORMING hydro-forming
下载PDF
Micro–meso-macroporous FeCo-N-C derived from hierarchical bimetallic FeCo-ZIFs as cathode catalysts for enhanced Li-O2 batteries performance 被引量:2
17
作者 Fufang Chao Baoxing Wang +6 位作者 Jiaojiao Ren Yingwei Lu Wenrui Zhang Xizhang Wang Lin Cheng Yongbing Lou Jinxi Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第8期212-219,I0008,共9页
Developing bifunctional catalysts that increase both the OER and ORR kinetics and transport reactants with high efficiency is desirable. Herein, micro–meso-macroporous FeCo-N-C-X(denoted as "MFeCo-N-C-X", X... Developing bifunctional catalysts that increase both the OER and ORR kinetics and transport reactants with high efficiency is desirable. Herein, micro–meso-macroporous FeCo-N-C-X(denoted as "MFeCo-N-C-X", X represents Fe/Co molar ratio in bimetallic zeolite imidazole frameworks FeCo-ZIFs) catalysts derived from hierarchical M-FeCo-ZIFs-X was prepared. The micropores in M-FeCo-N-C-X have strong capability in O2 capture as well as dictate the nucleation and early-stage deposition of Li2O2,the mesopores provided a channel for the electrolyte wetting, and the macroporous structure promoted more available active sites when used as cathode for Li-O2 batteries. More importantly, M-Fe CoN-C-0.2 based cathode showed a high initial capacity(18,750 mAh g-1@0.1 A g-1), good rate capability(7900 m Ah g-1@0.5 A g-1), and cycle stability up to 192 cycles. Interestingly, the FeCo-N-C-0.2 without macropores suffered relatively poorer stability with only 75 cycles, although its discharge capacity was still as high as 17,200 mA h g-1(@0.1 A g-1). The excellent performance attributed to the synergistic contribution of homogeneous Fe, Co nanoparticles and N co-doping carbon frameworks with special micro–meso-macroporous structure. The results showed that hierarchical FeCo-N-C architectures are promising cathode catalysts for Li-O2 batteries. 展开更多
关键词 micromeso-macroporous FeCo-N-C Li-O2 battery Cathode catalyst Oxygen evolution/reduction reaction
下载PDF
Macro and micro mechanics behavior of granite after heat treatment by cluster model in particle flow code 被引量:8
18
作者 Wen-Ling Tian Sheng-Qi Yang Yan-Hua Huang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第1期175-186,共12页
In this paper, a cluster model in particle flow code was used to simulate granite specimens after heat treatment under uniaxial compression. The results demonstrated that micro-cracks are randomly distributed in the s... In this paper, a cluster model in particle flow code was used to simulate granite specimens after heat treatment under uniaxial compression. The results demonstrated that micro-cracks are randomly distributed in the specimen when the temperature is below 300?C, and have partial coalescence when the temperature is up to 450?C, then form macro-cracks when the temperature is above 600?C. There is more inter-granular cracking than intra-granular cracking, and their ratio increases with increasing temperature.The micro-cracks are almost constant when the temperature decreases from 900?C to room temperature, except for quartz α–β phase transition temperature(573?C). The fracture evolution process is obviously affected by these cracks, especially at 600–900?C. Elevated temperature leads to easily developed displacement between the grains, and the capacity to store strain energy becomes weaker, corresponding to the plasticity of granite after heat treatment. 展开更多
关键词 Cluster model GRANITE Thermal damage micro-CRACK Energy
下载PDF
Hydrogen etching induced hierarchical meso/micro-pore structure with increased active density to boost ORR performance of Fe-N-C catalyst 被引量:4
19
作者 Liqin Gao Meiling Xiao +3 位作者 Zhao Jin Changpeng Liu Junjie Ge Wei Xing 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第8期17-23,I0002,共8页
Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the ac... Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the active site hosts, its hostility to electron/mass transfer could lead to the incomplete fulfillment of the catalytic activity. Besides, the formation of inactive metallic Fe particles during the conventional catalyst synthesis could also decrease the active site density and complicate the identification of real active site. Herein, we developed a facial hydrogen etching methodology to yield single site Fe-N-C catalysts featured with micro/mesoporous hierarchical structure. The hydrogen concentration in pyrolysis process was designated to effectively regulate the pore structure and active site density of the resulted catalysts.The optimized sample achieves excellent ORR catalytic performance with an ultralow H2O2 yield(1%)and superb stability over 10,000 cycles. Our finding provides new thoughts for the rational design of hierarchically porous carbon-based materials and highly promising non-precious metal ORR catalysts. 展开更多
关键词 HIERARCHICAL meso/micro-pore structure HYDROGEN ETCHING Single site Fe-N-C catalysts Carbon-nitrogen-coordinated iron(FeN4) Oxygen reduction reaction
下载PDF
DEVELOPMENT OF MESO-AND MICRO-SCALE STRUCTURES IN THE CHAMBA-BHARMAUR SYNCLINE, WESTERN HIMALAYA, INDIA
20
作者 B. K.Sharma,A. M.Bhola (Deparment of Geology, University of Delhi, Delhi\|110 007, India, E\|mail: brajkishore@hotmail.com bksharma@himalaya.du.ac.in) 《地学前缘》 EI CAS CSCD 2000年第S1期23-24,共2页
The Chamba\|Bharmaur syncline located in between Zanskar range in the north and Dhauladhar\|Pirpanjal range in the south , in the Chamba district of Western Himachal Pradesh. The rocks constituting Chamba\|Bharmaur sy... The Chamba\|Bharmaur syncline located in between Zanskar range in the north and Dhauladhar\|Pirpanjal range in the south , in the Chamba district of Western Himachal Pradesh. The rocks constituting Chamba\|Bharmaur syncline belong to Precambrian to Lr. Triassic (Rattan, 1973) and represent the southern extension of the Tethyan facies of the Zanskar Tethys Himalayan sequence (Thakur, 1998). The geological and structural mapping in the Chamba\|Bharmaur syncline reveal that the area comprises of various litho\|units which show imprint of various phases of deformation. Three main phases of deformation DF\-1, DF\-2 and DF\-3 have affected the rocks of the Chamba\|Bharmaur syncline. The earliest recognisable deformational structures of the area are tight isoclinal folds appressed with long drawn out limbs and thickened hinges have experienced buckle shortening of 80%. They have been rendered intrafolial folds in many places; only a few of them show disharmony. The folds initiated in the multilayered sequences are generally controlled in their distribution and wave\|length by more competent members of the sequence. 展开更多
关键词 meso\| and micro\|scale STRUCTURES deformation the Chamba\|Bharmaur SYNCLINE WESTERN HIMALAYA
下载PDF
上一页 1 2 220 下一页 到第
使用帮助 返回顶部