WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravi...WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravimetric analysis(TGA)and differential scanning calorimetry(DSC).The effect of sintering temperature on the microstructure and mechanical properties of nanocrystalline cemented carbide was studied by scanning electron microscope(SEM),high resolution transmission electron microscope(HRTEM)and mechanical property test.The results showed that the nano WC grains began to grow in the solid phase sintering stage.A high-performance nano-nitrogen-containing cemented carbide with uniform microstructure and good interfacial bonding can be obtained by increasing the sintering temperature to 1380℃.It has a transverse rupture strength(TRS)of 5057 MPa and a hardness of 1956 HV30.展开更多
The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of...The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually.展开更多
Understanding the physical,mechanical behavior,and seepage characteristics of coal under hydro-mechanical coupling holds significant importance for ensuring the stability of surrounding rock formations and preventing ...Understanding the physical,mechanical behavior,and seepage characteristics of coal under hydro-mechanical coupling holds significant importance for ensuring the stability of surrounding rock formations and preventing gas outbursts.Scanning electron microscopy,uniaxial tests,and triaxial tests were conducted to comprehensively analyze the macroscopic and microscopic physical and mechanical characteristics of coal under different soaking times.Moreover,by restoring the stress path and water injection conditions of the protective layer indoors,we explored the coal mining dynamic behavior and the evolution of permeability.The results show that water causes the micro-surface of coal to peel off and cracks to expand and develop.With the increase of soaking time,the uniaxial and triaxial strengths were gradually decreased with nonlinear trend,and decreased by 63.31%and 30.95%after soaking for 240 h,respectively.Under different water injection pressure conditions,coal permeability undergoes three stages during the mining loading process and ultimately increases to higher values.The peak stress of coal,the deviatoric stress and strain at the permeability surge point all decrease with increasing water injection pressure.The results of this research can help improve the understanding of the coal mechanical properties and seepage evolution law under hydro-mechanical coupling.展开更多
Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity ...Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity of temperature distribution in microsystems,making precise temperature control for electronic components extremely challenging.Herein,we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50×50μm^(2),which are fabricated from dense and flat freestanding Bi2Te3-based ther-moelectric nano films deposited on a newly developed nano graphene oxide membrane substrate.Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics.A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445μW,resulting in an ultrahigh temperature control capability over 100 K mW^(-1).Moreover,an ultra-fast cooling rate exceeding 2000 K s^(-1) and excellent reliability of up to 1 million cycles are observed.Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics.展开更多
The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience.In recent years,active micro/nano-bioelectronic d...The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience.In recent years,active micro/nano-bioelectronic devices have undergone significant advancements,thereby facilitating the study of electrophysiology.The distinctive configuration and exceptional functionality of these active micro-nano-collaborative bioelectronic devices offer the potential for the recording of high-fidelity action potential signals on a large scale.In this paper,we review three-dimensional active nano-transistors and planar active micro-transistors in terms of their applications in electroexcitable cells,focusing on the evaluation of the effects of active micro/nano-bioelectronic devices on electrophysiological signals.Looking forward to the possibilities,challenges,and wide prospects of active micro-nano-devices,we expect to advance their progress to satisfy the demands of theoretical investigations and medical implementations within the domains of cardiology and neuroscience research.展开更多
This paper conducted experimental studies on the damping and mechanical properties of carbon nanotube-nanosilica-cement composite materials with different carbon nanotube contents. The damping and mechanical propertie...This paper conducted experimental studies on the damping and mechanical properties of carbon nanotube-nanosilica-cement composite materials with different carbon nanotube contents. The damping and mechanical properties enhancement mechanisms were analyzed and compared through the porosity structure test, XRD analysis, and scanning electron microscope observation. The results show that the introduction of nanosilica significantly improves the dispersion of carbon nanotubes in the cement matrix. At the same time, the addition of nanosilica not only effectively reduces the critical pore size and average pore size of the cement composite material, but also exhibits good synergistic effects with carbon nanotubes, which can significantly optimize the pore structure. Finally, a rationalization suggestion for the co-doping of nanosilica and carbon nanotubes was given to achieve a significant increase in the flexural strength, compressive strength and loss factor of cement-based materials.展开更多
Micro- and nano-plastics (MNPs) are tiny plastic particles resulting from plastic product degradation. Soil MNPs have been identified as potential influential factors affecting various soil properties and crop biomass...Micro- and nano-plastics (MNPs) are tiny plastic particles resulting from plastic product degradation. Soil MNPs have been identified as potential influential factors affecting various soil properties and crop biomass productivity. This mini-review provides a synthesis of recent findings concerning their effects on soil physicochemical properties, microorganisms, organic carbon content, soil nutrients, greenhouse gas emissions, soil fauna, and their impacts on plant ecophysiology, growth, and production. The results indicate that MNPs may markedly impede soil aggregation ability, increase porosity, decrease soil bulk density, enhance water retention capacity, influence soil pH and electrical conductivity, and escalate soil water evaporation. Exposure to MNPs may predominantly induce changes in soil microbial composition, reducing the diversity and complexity of microbial communities and microbial activity while enhancing soil organic carbon stability, influencing soil nutrient dynamics, and stimulating organic carbon decomposition and denitrification processes, leading to elevated soil respiration and methane emissions, and potentially decreasing soil nitrous oxide emission. Additionally, MNPs may adversely affect soil fauna, diminish seed germination rates, promote plant root growth, yet impair plant photosynthetic efficacy and biomass productivity. These findings contribute to a better understanding of the impacts and mechanistic foundations of MNPs. Future research avenues are suggested to further explore the impacts and economic implications.展开更多
Coating technologies are a commonly used way to protect metals against corrosion.However,with more and more severe service environments of materials,many protective coating systems often are not environmentally friend...Coating technologies are a commonly used way to protect metals against corrosion.However,with more and more severe service environments of materials,many protective coating systems often are not environmentally friendly or toxic as in the case of chromates.Based on the world’s abundant ideal magnesium(Mg)and its alloy,the smart self-healing anticorrosive coating can autonomously restore the damaged part of the coating according to the environmental changes,strengthen the corrosion protection ability,and prolong its service life.This paper reviews the research progress of smart self-healing coatings on Mg alloys.These coatings mostly contain suitable corrosion inhibitors encapsulated into micro/nano containers.Moreover,the different self-healing mechanisms and functionalities of micro/nano containers are discussed.The micro/nano containers range from inorganic nanocontainers such as mesoporous nanoparticles(silica(SiO_(2)),titanium dioxide(TiO_(2)),etc.),over inorganic clays(halloysite,hydrotalcite-like,zeolite),to organic nanocontainers such as polymer microcapsules,nanofibers,chitosan(CS)and cyclodextrin(CD),as well as,carbon materials such as graphene and carbon nanotubes and hybrids such as metal organic frameworks.The functioning of micro/nano containers can be divided in two principal groups:autonomous(based on defect filling and corrosion inhibition)and non-autonomous(based on dynamic bonds and shape memory polymers).Moreover,multi functionalities and composite applications of various micro/nano containers are summarized.At present,significant progress has been made in the preparation methods and technologies of micro/nano containers.Achieving long-term self-healing properties of coatings sensing of coating failure and early warning after self-healing function failure can be expected as the main development direction of self-healing corrosion protection coatings in the future.展开更多
Due to their tiny size,autonomous motion and functionalize modifications,micro/nanomotors have shown great potential for environmental remediation,biomedicine and micro/nano-engineering.One-dimensional(1D)micro/nanomo...Due to their tiny size,autonomous motion and functionalize modifications,micro/nanomotors have shown great potential for environmental remediation,biomedicine and micro/nano-engineering.One-dimensional(1D)micro/nanomotors combine the characteristics of anisotropy and large aspect ratio of 1D materials with the advantages of functionalization and autonomous motion of micro/nanomotors for revolutionary applications.In this review,we discuss current research progress on 1D micro/nanomotors,including the fabrication methods,driving mechanisms,and recent advances in environmental remediation and biomedical applications,as well as discuss current challenges and possible solutions.With continuous attention and innovation,the advancement of 1D micro/nanomotors will pave the way for the continued development of the micro/nanomotor field.展开更多
Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implement...Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and selfpowered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.展开更多
Interfacial solar evaporation holds great promise to address the freshwater shortage.However,most interfacial solar evaporators are always filled with water throughout the evaporation process,thus bringing unavoidable...Interfacial solar evaporation holds great promise to address the freshwater shortage.However,most interfacial solar evaporators are always filled with water throughout the evaporation process,thus bringing unavoidable heat loss.Herein,we propose a novel interfacial evaporation structure based on the micro–nano water film,which demonstrates significantly improved evaporation performance,as experimentally verified by polypyrrole-and polydopamine-coated polydimethylsiloxane sponge.The 2D evaporator based on the as-prepared sponge realizes an enhanced evaporation rate of 2.18 kg m^(−2)h^(−1)under 1 sun by fine-tuning the interfacial micro–nano water film.Then,a homemade device with an enhanced condensation function is engineered for outdoor clean water production.Throughout a continuous test for 40 days,this device demonstrates a high water production rate(WPR)of 15.9–19.4 kg kW^(−1)h^(−1)m^(−2).Based on the outdoor outcomes,we further establish a multi-objective model to assess the global WPR.It is predicted that a 1 m^(2)device can produce at most 7.8 kg of clean water per day,which could meet the daily drinking water needs of 3 people.Finally,this technology could greatly alleviate the current water and energy crisis through further large-scale applications.展开更多
Sn_(1−x)Er_(x)O_(2)(x=0%,8%,16%,24%)micro/nanofibers were prepared by electrospinning combined with heat treatment using erbium nitrate,stannous chloride and polyvinylpyrrolidone(PVP)as raw materials.The target produc...Sn_(1−x)Er_(x)O_(2)(x=0%,8%,16%,24%)micro/nanofibers were prepared by electrospinning combined with heat treatment using erbium nitrate,stannous chloride and polyvinylpyrrolidone(PVP)as raw materials.The target products were characterized by thermogravimetric analyzer,X-ray diffrotometer,fourier transform infrared spectrometer,scanning electron microscope,spectrophotometer and infrared emissivity tester,and the effects of Er^(3+)doping on its infrared and laser emissivity were studied.At the same time,the Sn_(1−x)Er_(x)O_(2)(x=0%,16%)doping models were constructed based on the first principles of density functional theory,and the related optoelectronic properties such as their energy band structure,density of states,reflectivity and dielectric constant were analyzed,and further explained the mechanism of Er^(3+)doping on SnO_(2)infrared emissivity and laser absorption from the point of electronic structure.The results showed that after calcination at 600℃,single rutile type SnO_(2)was formed,and the crystal structure was not changed by doping Er^(3+).The calcined products showed good fiber morphology,and the average fiber diameter was 402 nm.The infrared emissivity and resistivity of the samples both decreased first and then increased with the increase of Er^(3+)doping amount.When x=16%,the infrared emis-sivity of the sample was at least 0.71;and Er^(3+)doping can effectively reduce the reflectivity of SnO_(2)at 1.06μm and 1.55μm,when x=16%,its reflectivity at 1.06μm and 1.55μm are 50.5%and 40%,respectively,when x=24%,the reflectivity at 1.06μm and 1.55μm wavelengths are 47.3%and 42.1%,respectively.At the same time,the change of carrier concentration and electron transition before and after Er^(3+)doping were described by first-principle calculation,and the regulation mechanism of infrared emissivity and laser reflectivity was explained.This study provides a certain experimental and theoretical basis for the development of a single-type,light-weight and easily prepared infrared and laser compatible-stealth material.展开更多
Aiming at developing an effective tool to unveil key mechanisms in bio-flight as well as to provide guidelines for bio-inspired micro air vehicles(MAVs) design,we propose a comprehensive computational framework,whic...Aiming at developing an effective tool to unveil key mechanisms in bio-flight as well as to provide guidelines for bio-inspired micro air vehicles(MAVs) design,we propose a comprehensive computational framework,which integrates aerodynamics,flight dynamics,vehicle stability and maneuverability.This framework consists of(1) a Navier-Stokes unsteady aerodynamic model;(2) a linear finite element model for structural dynamics;(3) a fluidstructure interaction(FSI) model for coupled flexible wing aerodynamics aeroelasticity;(4) a free-flying rigid body dynamic(RBD) model utilizing the Newtonian-Euler equations of 6DoF motion;and(5) flight simulator accounting for realistic wing-body morphology,flapping-wing and body kinematics,and a coupling model accounting for the nonlinear 6DoF flight dynamics and stability of insect flapping flight.Results are presented based on hovering aerodynamics with rigid and flexible wings of hawkmoth and fruitfly.The present approach can support systematic analyses of bio- and bio-inspired flight.展开更多
The existing research about ductile grinding of fused silica glass was mainly focused on how to carry out ductile regime material removal for generating very "smoothed" surface and investigate the machining-induced ...The existing research about ductile grinding of fused silica glass was mainly focused on how to carry out ductile regime material removal for generating very "smoothed" surface and investigate the machining-induced damage in the grinding in order to reduce or eliminate the subsurface damage.The brittle/ductile transition behavior of optical glass materials and the wear of diamond wheel are the most important factors for ductile grinding of optical glass.In this paper,the critical brittle/ductile depth,the influence factors on brittle/ductile transition behavior,the wear of diamond grits in diamond grinding of ultra pure fused silica(UPFS) are investigated by means of micro/nano indentation technique,as well as single grit diamond grinding on an ultra-stiff machine tool,Tetraform "C".The single grit grinding processes are in-process monitored using acoustic emission(AE) and force dynamometer simultaneously.The wear of diamond grits,morphology and subsurface integrity of the machined groves are examined with atomic force microscope(AFM) and scanning electron microscope(SEM).The critical brittle/ductile depth of more than 0.5 μm is achieved.When compared to the using roof-like grits,by using pyramidal diamonds leads to higher critical depths of scratch with identical grinding parameters.However,the influence of grit shapes on the critical depth is not significant as supposed.The grinding force increased linearly with depth of cut in the ductile removal regime,but in brittle removal regime,there are large fluctuations instead of forces increase.The SEM photographs of the cross-section profile show that the median cracks dominate the crack patterns beneath the single grooves.Furthermore,The SEM photographs show multi worn patterns of diamond grits,indicating an inhomogeneous wear mechanism of diamond grits in grinding of fused silica with diamond grinding wheels.The proposed research provides the basal technical theory for improving the ultra-precision grinding of UPFS.展开更多
TiC based steel bonded carbides with the addition of nano TiN were prepared by vacuum sintering techniques.The microstructure was investigated using scanning electron microscopy(SEM) and transmission electron micros...TiC based steel bonded carbides with the addition of nano TiN were prepared by vacuum sintering techniques.The microstructure was investigated using scanning electron microscopy(SEM) and transmission electron microscopy(TEM),and the mechanical properties,such as bending strength,impact toughness,hardness,and density,were measured.The results indicate that the grain size becomes small and there is uniformity in the steel bonded carbide with nano addition;several smaller carbide particles are also found to be inlaid in the rim of the larger carbide grains and prevent the coalescence of TiC grains.The smaller and larger carbide grains joint firmly,and then the reduction of the average size of the grains leads to the increase in the mechanical properties of the steel bonded carbides with nano addition.But the mechanical properties do not increase monotonously with an increase in nano addition.When the nano TiN addition accounts for 6-8 wt.% of the amount of steel bonded carbides,the mechanical properties reach the maximum values and then decrease with further increase in nano TiN addition.展开更多
In this research,a numerical study of mixed convection of non-Newtonian fluid and magnetic field effect along a vertical wavy surface was investigated.A simple coordinate transformation to transform wavy surface to a ...In this research,a numerical study of mixed convection of non-Newtonian fluid and magnetic field effect along a vertical wavy surface was investigated.A simple coordinate transformation to transform wavy surface to a flat surface is employed.A cubic spline collocation numerical method is employed to analyze transformed equations.The effect of various parameters such as Reynolds number,volume fraction 0-,Hartmann number,and amplitude of wave length was evaluated in improving the performance of a wavy microchannel.According to the presented results,the sinusoidal shape of the microchannel has a direct impact on heat transfer.By increasing the microchannel wave amplitude,the Nusselt number has risen.On the other hand,increasing the heat transfer in the higher wavelength ratio corrugated channel is seen as an effective method of increasing the heat transfer,especially at higher Reynolds numbers.The results showed that with increasing Hartmann numbers,the flow line near thewall becomesmore regular and,according to the temperature gradient created,theNusselt number growth.展开更多
Al6061matrix with different amounts of nano-silver(1%and2%)was produced by stir-casting method.Producedsamples were characterized by hardness,tensile,compression and wear tests.The hardness of the specimens at room te...Al6061matrix with different amounts of nano-silver(1%and2%)was produced by stir-casting method.Producedsamples were characterized by hardness,tensile,compression and wear tests.The hardness of the specimens at room temperature wasmeasured by Brinnell hardness testing machine.The magnitude of hardness increased evidently with the function of the mass fractionof the nano-Ag particle.The polished specimens were examined with an optical microscope.The fracture surfaces of tensile andcompressive specimens were further examined by scanning electron microscopy.Wear mechanisms were discussed based on thescanning electron microscopy observations of worn surface and wear debris morphology.There is an increase in compressivestrength,ultimate tensile strength,elongation and wear resistance of the Al?Ag composites compared with base alloy.The executionof stir-casting technique is relatively homogenous and fine microstructure which improves the addition of reinforcement material inthe molten metal.The results show that Al6061?nano-silver which is the best combination of hardness can replace the conventionalmaterial for better performance and longer life.展开更多
The object is to investigate the wear of an atomic force microscope (AFM) diamond tip when conducting micro/nano machining on single crystal silicon surface. The experimental research and theoretical analysis were car...The object is to investigate the wear of an atomic force microscope (AFM) diamond tip when conducting micro/nano machining on single crystal silicon surface. The experimental research and theoretical analysis were carried out on the worn tip in terms of wear rate, wear mechanism and the effect of the tip wear on micro machining process. The wear rate was calculated as 1.7(10~10mm 3/(N·m) by using a theoretical model combined with the experimental results. Through an integration of an AFM observation on the worn tip features with the FEM simulation of the stress distribution, in addition to the unit cutting force calculation on the AFM diamond tip, the wear mechanism of the AFM diamond tip was concluded as mainly chemical wear, and the wear process was also elaborated as well.展开更多
Microand nano-sized SiC/fluoroelastomer (FKM) composites were prepared by a mechanical mixing method. These composites were first characterized by a rotorless rheometer. Then the effects of micro- and nano-sized SiC...Microand nano-sized SiC/fluoroelastomer (FKM) composites were prepared by a mechanical mixing method. These composites were first characterized by a rotorless rheometer. Then the effects of micro- and nano-sized SiC on hardness, static and dynamic mechanical properties of the composites were investigated. The increasing amount of the SiC filler increased the curing efficiency of the biphenyl curing system, which was evident from the rheometric properties of the resulting composites. The tensile properties of composite increased with the increasing of micro- and nano-sized SiC content. When the micro- and nano-sized SiC content was higher than 20 phr, the composites showed almost unchanged tensile properties. The increasing of the tensile property was mainly attributed to the well dispersed micro- and nano-sized SiC particles characterized by SEM images. Compared to pure FKM, the composites exhibited a higher glass transition temperature and lower tan peak value.展开更多
基金Funded by the National Key Research and Development Plan of China(No.2017YFB0305900)。
文摘WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravimetric analysis(TGA)and differential scanning calorimetry(DSC).The effect of sintering temperature on the microstructure and mechanical properties of nanocrystalline cemented carbide was studied by scanning electron microscope(SEM),high resolution transmission electron microscope(HRTEM)and mechanical property test.The results showed that the nano WC grains began to grow in the solid phase sintering stage.A high-performance nano-nitrogen-containing cemented carbide with uniform microstructure and good interfacial bonding can be obtained by increasing the sintering temperature to 1380℃.It has a transverse rupture strength(TRS)of 5057 MPa and a hardness of 1956 HV30.
基金the Fundamental Research Funds for the Central Universities(Grant No.30920041102)National Natural Science Foundation of China(Grant No.11802134).
文摘The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually.
基金Project(52225403)supported by the National Natural Science Foundation of ChinaProject(2023YFF0615401)supported by the National Key Research and Development Program of China+1 种基金Projects(2023NSFSC0004,2023NSFSC0790)supported by Science and Technology Program of Sichuan Province,ChinaProject(2021-CMCUKFZD001)supported by the Open Fund of State Key Laboratory of Coal Mining and Clean Utilization,China。
文摘Understanding the physical,mechanical behavior,and seepage characteristics of coal under hydro-mechanical coupling holds significant importance for ensuring the stability of surrounding rock formations and preventing gas outbursts.Scanning electron microscopy,uniaxial tests,and triaxial tests were conducted to comprehensively analyze the macroscopic and microscopic physical and mechanical characteristics of coal under different soaking times.Moreover,by restoring the stress path and water injection conditions of the protective layer indoors,we explored the coal mining dynamic behavior and the evolution of permeability.The results show that water causes the micro-surface of coal to peel off and cracks to expand and develop.With the increase of soaking time,the uniaxial and triaxial strengths were gradually decreased with nonlinear trend,and decreased by 63.31%and 30.95%after soaking for 240 h,respectively.Under different water injection pressure conditions,coal permeability undergoes three stages during the mining loading process and ultimately increases to higher values.The peak stress of coal,the deviatoric stress and strain at the permeability surge point all decrease with increasing water injection pressure.The results of this research can help improve the understanding of the coal mechanical properties and seepage evolution law under hydro-mechanical coupling.
基金The authors thank D.Berger,D.Hofmann and C.Kupka in IFW Dresden for helpful technical support.H.R.acknowledges funding from the DFG(Deutsche Forschungsgemeinschaft)within grant number RE3973/1-1.Q.J.,H.R.and K.N.conceived the work.With the support from N.Y.and X.J.,Q.J.and T.G.fabricated the thermoelectric films and conducted the structural and compositional characterizations.Q.J.prepared microchips and fabricated the on-chip micro temperature controllers.Q.J.and N.P.carried out the temperature-dependent material and device performance measurements.Q.J.and H.R.performed the simulation and analytical calculations.Q.J.,H.R.and K.N.wrote the manuscript with input from the other coauthors.All the authors discussed the results and commented on the manuscript.
文摘Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity of temperature distribution in microsystems,making precise temperature control for electronic components extremely challenging.Herein,we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50×50μm^(2),which are fabricated from dense and flat freestanding Bi2Te3-based ther-moelectric nano films deposited on a newly developed nano graphene oxide membrane substrate.Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics.A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445μW,resulting in an ultrahigh temperature control capability over 100 K mW^(-1).Moreover,an ultra-fast cooling rate exceeding 2000 K s^(-1) and excellent reliability of up to 1 million cycles are observed.Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics.
基金The work is supported in part by the National Natural Science Foundation of China(Grant Nos.62171483,82061148011)Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ23F010004)+1 种基金Hangzhou Agricultural and Social Development Research Key Project(Grant No.20231203A08)Doctoral Initiation Program of the Tenth Affiliated Hospital,Southern Medical University(Grant No.K202308).
文摘The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience.In recent years,active micro/nano-bioelectronic devices have undergone significant advancements,thereby facilitating the study of electrophysiology.The distinctive configuration and exceptional functionality of these active micro-nano-collaborative bioelectronic devices offer the potential for the recording of high-fidelity action potential signals on a large scale.In this paper,we review three-dimensional active nano-transistors and planar active micro-transistors in terms of their applications in electroexcitable cells,focusing on the evaluation of the effects of active micro/nano-bioelectronic devices on electrophysiological signals.Looking forward to the possibilities,challenges,and wide prospects of active micro-nano-devices,we expect to advance their progress to satisfy the demands of theoretical investigations and medical implementations within the domains of cardiology and neuroscience research.
文摘This paper conducted experimental studies on the damping and mechanical properties of carbon nanotube-nanosilica-cement composite materials with different carbon nanotube contents. The damping and mechanical properties enhancement mechanisms were analyzed and compared through the porosity structure test, XRD analysis, and scanning electron microscope observation. The results show that the introduction of nanosilica significantly improves the dispersion of carbon nanotubes in the cement matrix. At the same time, the addition of nanosilica not only effectively reduces the critical pore size and average pore size of the cement composite material, but also exhibits good synergistic effects with carbon nanotubes, which can significantly optimize the pore structure. Finally, a rationalization suggestion for the co-doping of nanosilica and carbon nanotubes was given to achieve a significant increase in the flexural strength, compressive strength and loss factor of cement-based materials.
文摘Micro- and nano-plastics (MNPs) are tiny plastic particles resulting from plastic product degradation. Soil MNPs have been identified as potential influential factors affecting various soil properties and crop biomass productivity. This mini-review provides a synthesis of recent findings concerning their effects on soil physicochemical properties, microorganisms, organic carbon content, soil nutrients, greenhouse gas emissions, soil fauna, and their impacts on plant ecophysiology, growth, and production. The results indicate that MNPs may markedly impede soil aggregation ability, increase porosity, decrease soil bulk density, enhance water retention capacity, influence soil pH and electrical conductivity, and escalate soil water evaporation. Exposure to MNPs may predominantly induce changes in soil microbial composition, reducing the diversity and complexity of microbial communities and microbial activity while enhancing soil organic carbon stability, influencing soil nutrient dynamics, and stimulating organic carbon decomposition and denitrification processes, leading to elevated soil respiration and methane emissions, and potentially decreasing soil nitrous oxide emission. Additionally, MNPs may adversely affect soil fauna, diminish seed germination rates, promote plant root growth, yet impair plant photosynthetic efficacy and biomass productivity. These findings contribute to a better understanding of the impacts and mechanistic foundations of MNPs. Future research avenues are suggested to further explore the impacts and economic implications.
基金supported by the National Natural Science Foundation of China(51971040,52171101)the Natural Science Foundation of Chongqing(cstc2021jcyj-msxmX0613)+1 种基金the National Natural Science Foundation of China(52001036,51971044)the Independent Research Project of State Key Laboratory of Mechanical Transmissions(SKLMT-ZZKT-2022M12).
文摘Coating technologies are a commonly used way to protect metals against corrosion.However,with more and more severe service environments of materials,many protective coating systems often are not environmentally friendly or toxic as in the case of chromates.Based on the world’s abundant ideal magnesium(Mg)and its alloy,the smart self-healing anticorrosive coating can autonomously restore the damaged part of the coating according to the environmental changes,strengthen the corrosion protection ability,and prolong its service life.This paper reviews the research progress of smart self-healing coatings on Mg alloys.These coatings mostly contain suitable corrosion inhibitors encapsulated into micro/nano containers.Moreover,the different self-healing mechanisms and functionalities of micro/nano containers are discussed.The micro/nano containers range from inorganic nanocontainers such as mesoporous nanoparticles(silica(SiO_(2)),titanium dioxide(TiO_(2)),etc.),over inorganic clays(halloysite,hydrotalcite-like,zeolite),to organic nanocontainers such as polymer microcapsules,nanofibers,chitosan(CS)and cyclodextrin(CD),as well as,carbon materials such as graphene and carbon nanotubes and hybrids such as metal organic frameworks.The functioning of micro/nano containers can be divided in two principal groups:autonomous(based on defect filling and corrosion inhibition)and non-autonomous(based on dynamic bonds and shape memory polymers).Moreover,multi functionalities and composite applications of various micro/nano containers are summarized.At present,significant progress has been made in the preparation methods and technologies of micro/nano containers.Achieving long-term self-healing properties of coatings sensing of coating failure and early warning after self-healing function failure can be expected as the main development direction of self-healing corrosion protection coatings in the future.
基金supported by General Project of Natural Science Foundation of Guangdong Province(2022A1515010715)Guangzhou Basic and Applied Basic Research Project(202102020638)+4 种基金Science and Technology Planning Project of Guangdong Province(2017B090917002,2019B1515120027 and 2019A050510038)Research and development plan projects in key areas of Guangdong Province(2020B0101030005)supported by Grant PID2020-118154GB-I00 funded by MCIN/AEI/https://doi.org/10.13039/501100011033,Grant TED2021-132720B-I00,funded by MCIN/AEI/https://doi.org/10.13039/501100011033the European Union“NextGenerationEU”/PRTR(B.J.S)the Community of Madrid[grant number CM/JIN/2021-012(B.J.S)]。
文摘Due to their tiny size,autonomous motion and functionalize modifications,micro/nanomotors have shown great potential for environmental remediation,biomedicine and micro/nano-engineering.One-dimensional(1D)micro/nanomotors combine the characteristics of anisotropy and large aspect ratio of 1D materials with the advantages of functionalization and autonomous motion of micro/nanomotors for revolutionary applications.In this review,we discuss current research progress on 1D micro/nanomotors,including the fabrication methods,driving mechanisms,and recent advances in environmental remediation and biomedical applications,as well as discuss current challenges and possible solutions.With continuous attention and innovation,the advancement of 1D micro/nanomotors will pave the way for the continued development of the micro/nanomotor field.
基金supported financially by the National Key R&D Program of China (Nos. 2018YFA0208501 and 2018YFA0703200)the National Natural Science Foundation of China (NSFC, Nos. 52103236, 91963212, 21875260)Beijing National Laboratory for Molecular Sciences (No. BNLMSCXXM-202005)。
文摘Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and selfpowered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.
基金supported by the National Natural Science Foundation of China(No.52070162)the National Key Research and Development Program of China(2018YFA0901300).
文摘Interfacial solar evaporation holds great promise to address the freshwater shortage.However,most interfacial solar evaporators are always filled with water throughout the evaporation process,thus bringing unavoidable heat loss.Herein,we propose a novel interfacial evaporation structure based on the micro–nano water film,which demonstrates significantly improved evaporation performance,as experimentally verified by polypyrrole-and polydopamine-coated polydimethylsiloxane sponge.The 2D evaporator based on the as-prepared sponge realizes an enhanced evaporation rate of 2.18 kg m^(−2)h^(−1)under 1 sun by fine-tuning the interfacial micro–nano water film.Then,a homemade device with an enhanced condensation function is engineered for outdoor clean water production.Throughout a continuous test for 40 days,this device demonstrates a high water production rate(WPR)of 15.9–19.4 kg kW^(−1)h^(−1)m^(−2).Based on the outdoor outcomes,we further establish a multi-objective model to assess the global WPR.It is predicted that a 1 m^(2)device can produce at most 7.8 kg of clean water per day,which could meet the daily drinking water needs of 3 people.Finally,this technology could greatly alleviate the current water and energy crisis through further large-scale applications.
基金supported by the Key Research and Development Program of Hebei Province(No.21351501D)A Provincial and Ministerial Scientific Research Project(LJ20212C031165)Basic Frontier Science and Technology Innovation Project of Army Engineering University of PLA(KYSZJQZL2210)。
文摘Sn_(1−x)Er_(x)O_(2)(x=0%,8%,16%,24%)micro/nanofibers were prepared by electrospinning combined with heat treatment using erbium nitrate,stannous chloride and polyvinylpyrrolidone(PVP)as raw materials.The target products were characterized by thermogravimetric analyzer,X-ray diffrotometer,fourier transform infrared spectrometer,scanning electron microscope,spectrophotometer and infrared emissivity tester,and the effects of Er^(3+)doping on its infrared and laser emissivity were studied.At the same time,the Sn_(1−x)Er_(x)O_(2)(x=0%,16%)doping models were constructed based on the first principles of density functional theory,and the related optoelectronic properties such as their energy band structure,density of states,reflectivity and dielectric constant were analyzed,and further explained the mechanism of Er^(3+)doping on SnO_(2)infrared emissivity and laser absorption from the point of electronic structure.The results showed that after calcination at 600℃,single rutile type SnO_(2)was formed,and the crystal structure was not changed by doping Er^(3+).The calcined products showed good fiber morphology,and the average fiber diameter was 402 nm.The infrared emissivity and resistivity of the samples both decreased first and then increased with the increase of Er^(3+)doping amount.When x=16%,the infrared emis-sivity of the sample was at least 0.71;and Er^(3+)doping can effectively reduce the reflectivity of SnO_(2)at 1.06μm and 1.55μm,when x=16%,its reflectivity at 1.06μm and 1.55μm are 50.5%and 40%,respectively,when x=24%,the reflectivity at 1.06μm and 1.55μm wavelengths are 47.3%and 42.1%,respectively.At the same time,the change of carrier concentration and electron transition before and after Er^(3+)doping were described by first-principle calculation,and the regulation mechanism of infrared emissivity and laser reflectivity was explained.This study provides a certain experimental and theoretical basis for the development of a single-type,light-weight and easily prepared infrared and laser compatible-stealth material.
基金supported by a PRESTO-JST program,the Grant-in-Aid for Scientific Research JSPS.Japan(18656056 and 18100002).
文摘Aiming at developing an effective tool to unveil key mechanisms in bio-flight as well as to provide guidelines for bio-inspired micro air vehicles(MAVs) design,we propose a comprehensive computational framework,which integrates aerodynamics,flight dynamics,vehicle stability and maneuverability.This framework consists of(1) a Navier-Stokes unsteady aerodynamic model;(2) a linear finite element model for structural dynamics;(3) a fluidstructure interaction(FSI) model for coupled flexible wing aerodynamics aeroelasticity;(4) a free-flying rigid body dynamic(RBD) model utilizing the Newtonian-Euler equations of 6DoF motion;and(5) flight simulator accounting for realistic wing-body morphology,flapping-wing and body kinematics,and a coupling model accounting for the nonlinear 6DoF flight dynamics and stability of insect flapping flight.Results are presented based on hovering aerodynamics with rigid and flexible wings of hawkmoth and fruitfly.The present approach can support systematic analyses of bio- and bio-inspired flight.
基金supported by National Key Science and Technology Projects of China (Grant No. 2009ZX04001-101, Grant No. 2009ZX01001-151)New Century Excellent Talents in University,China (GrantNo. NCET-07-0246)National Natural Science Foundation of China(Grant No. 50675051)
文摘The existing research about ductile grinding of fused silica glass was mainly focused on how to carry out ductile regime material removal for generating very "smoothed" surface and investigate the machining-induced damage in the grinding in order to reduce or eliminate the subsurface damage.The brittle/ductile transition behavior of optical glass materials and the wear of diamond wheel are the most important factors for ductile grinding of optical glass.In this paper,the critical brittle/ductile depth,the influence factors on brittle/ductile transition behavior,the wear of diamond grits in diamond grinding of ultra pure fused silica(UPFS) are investigated by means of micro/nano indentation technique,as well as single grit diamond grinding on an ultra-stiff machine tool,Tetraform "C".The single grit grinding processes are in-process monitored using acoustic emission(AE) and force dynamometer simultaneously.The wear of diamond grits,morphology and subsurface integrity of the machined groves are examined with atomic force microscope(AFM) and scanning electron microscope(SEM).The critical brittle/ductile depth of more than 0.5 μm is achieved.When compared to the using roof-like grits,by using pyramidal diamonds leads to higher critical depths of scratch with identical grinding parameters.However,the influence of grit shapes on the critical depth is not significant as supposed.The grinding force increased linearly with depth of cut in the ductile removal regime,but in brittle removal regime,there are large fluctuations instead of forces increase.The SEM photographs of the cross-section profile show that the median cracks dominate the crack patterns beneath the single grooves.Furthermore,The SEM photographs show multi worn patterns of diamond grits,indicating an inhomogeneous wear mechanism of diamond grits in grinding of fused silica with diamond grinding wheels.The proposed research provides the basal technical theory for improving the ultra-precision grinding of UPFS.
文摘TiC based steel bonded carbides with the addition of nano TiN were prepared by vacuum sintering techniques.The microstructure was investigated using scanning electron microscopy(SEM) and transmission electron microscopy(TEM),and the mechanical properties,such as bending strength,impact toughness,hardness,and density,were measured.The results indicate that the grain size becomes small and there is uniformity in the steel bonded carbide with nano addition;several smaller carbide particles are also found to be inlaid in the rim of the larger carbide grains and prevent the coalescence of TiC grains.The smaller and larger carbide grains joint firmly,and then the reduction of the average size of the grains leads to the increase in the mechanical properties of the steel bonded carbides with nano addition.But the mechanical properties do not increase monotonously with an increase in nano addition.When the nano TiN addition accounts for 6-8 wt.% of the amount of steel bonded carbides,the mechanical properties reach the maximum values and then decrease with further increase in nano TiN addition.
文摘In this research,a numerical study of mixed convection of non-Newtonian fluid and magnetic field effect along a vertical wavy surface was investigated.A simple coordinate transformation to transform wavy surface to a flat surface is employed.A cubic spline collocation numerical method is employed to analyze transformed equations.The effect of various parameters such as Reynolds number,volume fraction 0-,Hartmann number,and amplitude of wave length was evaluated in improving the performance of a wavy microchannel.According to the presented results,the sinusoidal shape of the microchannel has a direct impact on heat transfer.By increasing the microchannel wave amplitude,the Nusselt number has risen.On the other hand,increasing the heat transfer in the higher wavelength ratio corrugated channel is seen as an effective method of increasing the heat transfer,especially at higher Reynolds numbers.The results showed that with increasing Hartmann numbers,the flow line near thewall becomesmore regular and,according to the temperature gradient created,theNusselt number growth.
文摘Al6061matrix with different amounts of nano-silver(1%and2%)was produced by stir-casting method.Producedsamples were characterized by hardness,tensile,compression and wear tests.The hardness of the specimens at room temperature wasmeasured by Brinnell hardness testing machine.The magnitude of hardness increased evidently with the function of the mass fractionof the nano-Ag particle.The polished specimens were examined with an optical microscope.The fracture surfaces of tensile andcompressive specimens were further examined by scanning electron microscopy.Wear mechanisms were discussed based on thescanning electron microscopy observations of worn surface and wear debris morphology.There is an increase in compressivestrength,ultimate tensile strength,elongation and wear resistance of the Al?Ag composites compared with base alloy.The executionof stir-casting technique is relatively homogenous and fine microstructure which improves the addition of reinforcement material inthe molten metal.The results show that Al6061?nano-silver which is the best combination of hardness can replace the conventionalmaterial for better performance and longer life.
文摘The object is to investigate the wear of an atomic force microscope (AFM) diamond tip when conducting micro/nano machining on single crystal silicon surface. The experimental research and theoretical analysis were carried out on the worn tip in terms of wear rate, wear mechanism and the effect of the tip wear on micro machining process. The wear rate was calculated as 1.7(10~10mm 3/(N·m) by using a theoretical model combined with the experimental results. Through an integration of an AFM observation on the worn tip features with the FEM simulation of the stress distribution, in addition to the unit cutting force calculation on the AFM diamond tip, the wear mechanism of the AFM diamond tip was concluded as mainly chemical wear, and the wear process was also elaborated as well.
基金Funded by the National Natural Science Foundation of China(No.50979016)
文摘Microand nano-sized SiC/fluoroelastomer (FKM) composites were prepared by a mechanical mixing method. These composites were first characterized by a rotorless rheometer. Then the effects of micro- and nano-sized SiC on hardness, static and dynamic mechanical properties of the composites were investigated. The increasing amount of the SiC filler increased the curing efficiency of the biphenyl curing system, which was evident from the rheometric properties of the resulting composites. The tensile properties of composite increased with the increasing of micro- and nano-sized SiC content. When the micro- and nano-sized SiC content was higher than 20 phr, the composites showed almost unchanged tensile properties. The increasing of the tensile property was mainly attributed to the well dispersed micro- and nano-sized SiC particles characterized by SEM images. Compared to pure FKM, the composites exhibited a higher glass transition temperature and lower tan peak value.