期刊文献+
共找到1,981篇文章
< 1 2 100 >
每页显示 20 50 100
Mg micro/nanoscale materials with sphere-like morphologies:Size-controlled synthesis and characterization 被引量:1
1
作者 TAO ZhanLiang LI ChunSheng CHEN Jun 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2009年第1期35-39,共5页
Mg micro/nanoscale materials with sphere-like morphologies are prepared via a vapor-transport deposition process. The structure and morphology of the asprepared products are characterized by powder X-ray diffraction a... Mg micro/nanoscale materials with sphere-like morphologies are prepared via a vapor-transport deposition process. The structure and morphology of the asprepared products are characterized by powder X-ray diffraction and scanning electron microscopy. Vapor-liquid-solid mechanism is proposed to explain the formation of Mg micro/nanospheres on the basis of the experimental results. 展开更多
关键词 MAGNESIUM micro/nanoscale SPHERES growth mechanism
原文传递
Synthesis of porous nano/micro structured LiFePO_4/C cathode materials for lithium-ion batteries by spray-drying method 被引量:1
2
作者 管晓梅 李国军 +1 位作者 黎春阳 任瑞铭 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第1期141-147,共7页
In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The result... In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres. 展开更多
关键词 LiFePO4/C cathode nano/micro structure porous material spray drying electrochemical properties
下载PDF
Construction and Properties of Structure-and Size-controlled Micro/Nano-energetic Materials 被引量:20
3
作者 HUANG Bing CAO Minhua +2 位作者 NIE Fude HUANG Hui HU Changwen 《Defence Technology(防务技术)》 SCIE EI CAS 2013年第2期75-103,共29页
The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development... The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development of the construction strategies for achieving zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) micro/nanostructures from energetic molecules is introduced. Also, an overview of the unique properties induced by micro/nanostructures and size effects is provided. Special emphasis is focused on the size-dependent properties that are different from those of the conventional micro-sized energetic materials, such as thermal decomposition, sensitivity, combustion and detonation, and compaction behaviors. A conclusion and our view of the future development of micro/nano-energetic materials and devices are given. 展开更多
关键词 applied chemistry STRUCTURE SIZE micro/nano-energetic materials construction technology PROPERTY
下载PDF
Laser Synthesis and Microfabrication of Micro/ Nanostructured Materials Toward Energy Conversion and Storage 被引量:12
4
作者 Lili Zhao Zhen Liu +6 位作者 Duo Chen Fan Liu Zhiyuan Yang Xiao Li Haohai Yu Hong Liu Weijia Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第3期107-154,共48页
Nanomaterials are known to exhibit a number of interesting physical and chemical properties for various applications,including energy conversion and storage,nanoscale electronics,sensors and actuators,photonics device... Nanomaterials are known to exhibit a number of interesting physical and chemical properties for various applications,including energy conversion and storage,nanoscale electronics,sensors and actuators,photonics devices and even for biomedical purposes.In the past decade,laser as a synthetic technique and laser as a microfabrication technique facilitated nanomaterial preparation and nanostructure construction,including the laser processing-induced carbon and non-carbon nanomaterials,hierarchical structure construction,patterning,heteroatom doping,sputtering etching,and so on.The laser-induced nanomaterials and nanostructures have extended broad applications in electronic devices,such as light–thermal conversion,batteries,supercapacitors,sensor devices,actuators and electrocatalytic electrodes.Here,the recent developments in the laser synthesis of carbon-based and non-carbon-based nanomaterials are comprehensively summarized.An extensive overview on laser-enabled electronic devices for various applications is depicted.With the rapid progress made in the research on nanomaterial preparation through laser synthesis and laser microfabrication technologies,laser synthesis and microfabrication toward energy conversion and storage will undergo fast development. 展开更多
关键词 Laser synthesis Laser microfabrication micro/nanostructured materials Energy conversion and storage
下载PDF
2D multifunctional devices:from material preparation to device fabrication and neuromorphic applications 被引量:1
5
作者 Zhuohui Huang Yanran Li +3 位作者 Yi Zhang Jiewei Chen Jun He Jie Jiang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期91-118,共28页
Neuromorphic computing systems,which mimic the operation of neurons and synapses in the human brain,are seen as an appealing next-generation computing method due to their strong and efficient computing abilities.Two-d... Neuromorphic computing systems,which mimic the operation of neurons and synapses in the human brain,are seen as an appealing next-generation computing method due to their strong and efficient computing abilities.Two-dimensional (2D) materials with dangling bond-free surfaces and atomic-level thicknesses have emerged as promising candidates for neuromorphic computing hardware.As a result,2D neuromorphic devices may provide an ideal platform for developing multifunctional neuromorphic applications.Here,we review the recent neuromorphic devices based on 2D material and their multifunctional applications.The synthesis and next micro–nano fabrication methods of 2D materials and their heterostructures are first introduced.The recent advances of neuromorphic 2D devices are discussed in detail using different operating principles.More importantly,we present a review of emerging multifunctional neuromorphic applications,including neuromorphic visual,auditory,tactile,and nociceptive systems based on 2D devices.In the end,we discuss the problems and methods for 2D neuromorphic device developments in the future.This paper will give insights into designing 2D neuromorphic devices and applying them to the future neuromorphic systems. 展开更多
关键词 2D material micro–nano fabrication multifunctional system neuromorphic electronics artificial intelligence
下载PDF
基于量子点@有序介孔复合材料的Micro⁃LED色转换特性
6
作者 陈晓钢 赵梦云 +6 位作者 蔡俊虎 李恭明 查楠 叶芸 徐胜 郭太良 陈恩果 《发光学报》 EI CAS CSCD 北大核心 2024年第1期59-68,共10页
量子点(Quantum dots)由于具有优异的光电特性,广泛应用于发光与显示、太阳能电池、光催化等领域,它的发现和合成获得了2023年诺贝尔化学奖。采用量子点色转换的Micro-LED全彩化显示技术无需巨量转移,有望实现大规模量产,然而,量子点在... 量子点(Quantum dots)由于具有优异的光电特性,广泛应用于发光与显示、太阳能电池、光催化等领域,它的发现和合成获得了2023年诺贝尔化学奖。采用量子点色转换的Micro-LED全彩化显示技术无需巨量转移,有望实现大规模量产,然而,量子点在高强度Micro-LED出光激发下的性能和寿命仍存在局限。基于此,本文研究了基于量子点@有序介孔(QDs@SBA-15)复合材料的Micro-LED色转换技术及其特性,有序介孔分子筛载体独特的孔道结构不仅能够有效提升Micro-LED色转换和光提取效率,且致密的有序介孔材料也一定程度上保障了量子点的稳定性。首先,通过时域有限差分方法(FDTD)建立了Micro-LED仿真模型,探究量子点粒径和有序介孔材料的孔径对光提取效率的影响;基于仿真结果指导,进一步采用物理共混法制备了QDs@SBA-15复合材料,通过透射光谱、荧光激发光谱、紫外-可见光吸收谱等手段对其进行表征并确定浓度配比;最后,将该复合材料与聚二甲基硅氧烷(PDMS)混合固化成膜,并研究了其光致发光性能。实验结果发现,量子点粒径和介孔材料孔径的匹配度以及量子点和有序介孔材料的比例浓度是影响QDs@SBA-15复合材料发光效率及Micro-LED色转换性能的关键因素;通过优化,所得复合材料可获得优异的发光性能以及良好的环境稳定性,相比于纯量子点色转换层,复合材料的光提取效率提升了81.73%,复合材料的环境稳定性提升了14.33%,以Micro-LED作为蓝光光源组成的三基色发光器件工作色域达到了104.52%NTSC。本研究为量子点色转换Micro-LED显示技术提供了理论指导,为实现Micro-LED全彩化开辟了新路径。 展开更多
关键词 量子点 有序介孔材料 色转换 micro-LED
下载PDF
Application of micro/nanoscale thermal radiation to thermophotovoltaic system 被引量:1
7
作者 王爱华 蔡九菊 《Journal of Central South University》 SCIE EI CAS 2011年第6期2176-2184,共9页
Thermophotovoltaic (TPV) system has been regarded as one promising means to alleviate current energy demand because it can directly generate electricity from radiation heat via photons. However, the presently availa... Thermophotovoltaic (TPV) system has been regarded as one promising means to alleviate current energy demand because it can directly generate electricity from radiation heat via photons. However, the presently available TPV systems suffer from low conversion efficiency and low throughput. A viable solution to increase their efficiency is to apply micro/nanoscale radiation principles in the design of different components to utilize the characteristics ~f thermal radiation at small distances and in microstructures. Several critical issues are reviewed, such as photovoltaic effect, quantum efficiency and efficiency of TPV system. Emphasis is given to the development of wavelength-selective emitters and filters and the aspects of micro/nanoscale heat transfer. Recent progress, along with the challenges and opportunities for future development of TPV systems are also outlined. 展开更多
关键词 thermophotovoltaic system micro/nanoscale radiation quantum efficiency EMITTER filter photon tunneling
下载PDF
A review on the erosion mechanisms in abrasive waterjet micromachining of brittle materials 被引量:2
8
作者 T Nguyen J Wang 《International Journal of Extreme Manufacturing》 2019年第1期111-124,共14页
The fabrication of miniature structures on components with high-integrity surface quality represents one of the cutting edge technologies in the 21st century.The materials used to construct such small structures are o... The fabrication of miniature structures on components with high-integrity surface quality represents one of the cutting edge technologies in the 21st century.The materials used to construct such small structures are often difficult-to-machine.Many other readily available technologies either cannot realise necessary precision or are costly.Abrasive waterjet(AWJ)is a favourable technology for the machining of difficult-to-machine materials.However,this technology is generally aimed at large stock removal.A reduction in the scale of this technology is an attractive avenue for meeting the pressing need of industry in the production of damage-free micro features.This paper reviews some of the work that has been undertaken at UNSW Sydney about the development of such an AWJ technology,focusing on the system design currently employed to generate a micro abrasive jet,the erosion mechanisms associated with processing some typical brittle materials of both single-and two-phased.Processing models based on the findings are also presented.The review concludes on the viability of the technology and the prevailing trend in its development. 展开更多
关键词 micro abrasive jet abrasive waterjet ductile erosion viscous flow difficult to machine materials
下载PDF
Structure Characterization and Dephosphorization Effect Analysis of Oyster Shell-silica Micropowder Waste Water Dephosphorization Materials 被引量:2
9
作者 赖寿莲 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2010年第1期33-38,共6页
In this work,the effects of pH value of waste water and initial concentration of phosphorus on dephosphorization materials were investigated.The materials were prepared by shaping,sintering and hydrothermal reshaping ... In this work,the effects of pH value of waste water and initial concentration of phosphorus on dephosphorization materials were investigated.The materials were prepared by shaping,sintering and hydrothermal reshaping oyster shell and silica micro-powder.Different concentrations of phosphorus-contained waste water were simulated with potassium dihydrogen phosphate solution,the effect of dephosphorization was tested with phosphomolybdenum blue spectrophotometer method,and the crystal phase and microstructure of materials were characterized by XRD and SEM methods. It was indicated that dephosphorization was completed in 6 h when the initial phosphorus concentration in waste water was lower than 15 mg/L, and the dephosphorization time prolonged as the increase of phosphorus concentration. It was observed that the pH value of waste water influenced dephosphorization significantly, and neutral subalkalic environment favored dephosphorization. When the pH value was 11, the efficiency of dephosphozation was the greatest. For waste water with an initial concentration of 20 mg/L, the dephosphozation rate is close to 100% in8 h. 展开更多
关键词 oyster shell silica micro-powder hydrothermal reaction waste water dephosphorization materials environmental-friendly material
下载PDF
Experiments and computer simulation analysis of impact behaviors of micro-sized abrasive in waterjet cutting of thin multiple layered materials
10
作者 Jung-Han LEE Kang-Su PARK +2 位作者 Myung Chang KANG Bo Sik KANG Bo Sung SHIN 《中国有色金属学会会刊:英文版》 CSCD 2012年第S3期864-869,共6页
The abrasive waterjet (AWJ) is now widely used in the advanced cutting processes of polymers,metals,glass,ceramics and composite materials like thin multiple-layered material (TMM).Various research and development eff... The abrasive waterjet (AWJ) is now widely used in the advanced cutting processes of polymers,metals,glass,ceramics and composite materials like thin multiple-layered material (TMM).Various research and development efforts have recently been made to understand the science of AWJ.However,the interaction mechanism between a workpiece and high-velocity abrasive particles still remains a complicated problem.In this work,the material removal mechanisms of AWJ such as micro penetration and micro dent were experimentally investigated.In addition,a new computer simulation model considering high strain rate effect was proposed to understand the micro impact behavior of high-velocity micro-sized abrasives in AWJ cutting. 展开更多
关键词 ABRASIVE waterjet THIN MULTIPLE layered materials micro-sized ABRASIVE micro PENETRATION micro DENT
下载PDF
Study on Surface Roughness in Micro Milling of Single Crystal Materials 被引量:1
11
作者 Qi Gao Po Jin Guangyan Guo 《Mechanical Engineering Science》 2019年第1期14-17,共4页
Micro milling is a machining method of high precision and efficiency for micro components and features.In order to study the surface quality of single crystal materials in micro milling,the two-edged cemented carbide ... Micro milling is a machining method of high precision and efficiency for micro components and features.In order to study the surface quality of single crystal materials in micro milling,the two-edged cemented carbide tool milling cutter with 0.4 mm diameter was used,and the orthogonal experiment was completed on the micro-milling of single crystal aluminum material.Through the analysis of statistical results,the primary and secondary factor which impacting on surface quality were found as follows:spindle speed,feed rate,milling depth.The ideal combination of optimized process parameters were obtained,when the spindle speed was 36000 r/min,the milling depth was 10μm,the feed rate was 80μm/s,which made the milling surface roughness is 0.782μm and minimal.Single crystal materials removal mechanism were revealed,and the influence of cutting parameters on micro-milling surface were discussed,the reason of tool wear was analyzed.Those provide a certain theoretical and experimental basis for micro milling of single crystal materials. 展开更多
关键词 Surface ROUGHNESS micro MILLING Single crystal materials ORTHOGONAL experiment
下载PDF
Preparation and Characterization of CA-MA Eutectic/Silicon Dioxide Nanoscale Composite Phase Change Material from Water Glass via Sol-Gel Method
12
作者 孟多 ZHAO Kang +1 位作者 ZHAO Wei JIANG Guowei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1048-1056,共9页
This work mainly involved the preparation of a nano-scale form-stable phase change material(PCM) consisting of capric and myristic acid(CA-MA) binary eutectic acting as thermal absorbing material and nano silicon ... This work mainly involved the preparation of a nano-scale form-stable phase change material(PCM) consisting of capric and myristic acid(CA-MA) binary eutectic acting as thermal absorbing material and nano silicon dioxide(nano-SiO_2) serving as the supporting material. Industrial water glass for preparation of the nano silicon dioxide matrix and CA-MA eutectic mixture were compounded by single-step sol-gel method with the silane coupling agent. The morphology, chemical characterization and form stability property of the composite PCM were investigated by transmission electron microscopy(TEM), scanning electron microscopy(SEM), Fourier-transform infrared(FT-IR) spectroscopy and polarizing microscopy(POM). It was indicated that the average diameter of the composite PCM particle ranged from 30-100 nm. The CA-MA eutectic was immobilized in the network pores constructed by the Si-O bonds so that the composite PCM was allowed no liquid leakage above the melting temperature of the CA-MA eutectic. Differential scanning calorimetry(DSC) and thermogravimetric analysis(TGA) measurement were conducted to investigate the thermal properties and stability of the composite PCM. From the measurement results, the mass fraction of the CA-MA eutectic in the composite PCM was about 40%. The phase change temperature and latent heat of the composite were determined to be 21.15 ℃ and 55.67 J/g, respectively. Meanwhile, thermal conductivity of the composite was measured to be 0.208 W·m^(-1)·K^(-1) by using the transient hot-wire method. The composite PCM was able to maintain the surrounding temperature close to its phase change temperature and behaved well in thermalregulated performance which was verified by the heat storage-release experiment. This kind of form-stable PCM was supposed to complete thermal insulation even temperature regulation by the dual effect of relatively low thermal conductivity and phase change thermal storage-release properties. So it can be formulated that the nanoscale CA-MA/SiO_2 composite PCM with the form-stable property, good thermal storage capacity and relatively low thermal conductivity can be applied for energy conservation as a kind of thermal functional material. 展开更多
关键词 fatty acid eutectic silicon dioxide nanoscale composite phase change material water glass sol-gel
下载PDF
Development of a micro-indentation device for measuring the mechanical properties of soft materials
13
作者 Xiang He Pengfei Wang +4 位作者 Guoyou Huang Shaobao Liu Minglong Xu Feng Xu TianJian Lu 《Theoretical & Applied Mechanics Letters》 CAS 2013年第5期23-26,共4页
Indentation is a simple and nondestructive method to measure the mechanical properties of soft materials, such as hydrogels, elastomers and soft tissues. In this work, we have developed a micro-indentation system with... Indentation is a simple and nondestructive method to measure the mechanical properties of soft materials, such as hydrogels, elastomers and soft tissues. In this work, we have developed a micro-indentation system with high-precision to measure the mechanical properties of soft materials, where the shear modulus and Poisson's ratio of the materials can be obtained by analyzing the load relaxation curve. We have validated the accuracy and stability of the system by comparing the measured mechanical properties of a polyethylene glycol sample with that obtained from a commercial instrument. The mechanical properties of another typical polydimethylsiloxane sample submerged in heptane are measured by using conical and spherical indenters, respectively. The measured values of shear modulus and Poisson's ratio are within a reasonable range. 展开更多
关键词 micro-INDENTATION soft materials relaxation curve mechanical properties
下载PDF
Behaviour of Roofing Materials Facing to Micro-Organisms
14
作者 Marielle Fassier Céline Faugeron +2 位作者 Vincent Gloaguen Céline Ducroquetz Olivier Dupont 《Green and Sustainable Chemistry》 2013年第1期8-14,共7页
An accelerated water-streaming test was used to evaluate several roofing materials regarding their behavior to colonization by algae, by closely reproducing the phenomenon of natural biological soiling. A set of roofi... An accelerated water-streaming test was used to evaluate several roofing materials regarding their behavior to colonization by algae, by closely reproducing the phenomenon of natural biological soiling. A set of roofing materials with defined physical and chemical characteristics was thus investigated against the colonization by algae. Porosity, roughness and chemical composition showed to be factors of influence in the establishment of those micro-organisms. 展开更多
关键词 Building materials Fired CLAY Products Water-Streaming Test micro-ORGANISMS COLONIZATION
下载PDF
The Evaluation of Teaching Materials 被引量:1
15
作者 王熙 《海外英语》 2011年第1X期52-54,57,共4页
The ability to evaluate teaching materials effectively is a very important professional activity for all EFL teachers,CFL teachers as well.It is essential to fully understand a book's content and style,as well as ... The ability to evaluate teaching materials effectively is a very important professional activity for all EFL teachers,CFL teachers as well.It is essential to fully understand a book's content and style,as well as its strengths and weaknesses,so that the book can be adapted to suit factors such as course aims,student needs and teacher beliefs.This paper deals with the evaluation of a TCFT(Teaching Chinese as a Foreign Language) textbook,New Practical Chinese Reader(NPCR) based on McDonough and Shaw Model and Evaluation Criteria for NPCR. 展开更多
关键词 TEACHING materials EVALUATION macro-evaluation micro-evaluation overall EVALUATION
下载PDF
High-throughput structure determination of polycrystalline functional materials:a platform for automated 3DED/MicroED data collection
16
作者 Zhenghan Zhang Zhengyin Liang +2 位作者 Chao Ma Cong Lin Jian Li 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第12期4158-4166,共9页
Structure determination plays the most crucial role in the discovery of novel functional materials,because only by knowing the intrinsic structures can we accurately and completely understand their properties and appl... Structure determination plays the most crucial role in the discovery of novel functional materials,because only by knowing the intrinsic structures can we accurately and completely understand their properties and applications.However,most new materials are obtained in polycrystalline form or even as mixtures with multiple phases when first synthesized,presenting significant challenges in their structure determination and phase elucidation.Fortunately,the developed three-dimensional electron diffraction(3DED/MicroED)has provided a promising solution to overcome these challenges.In this study,we have constructed a state-of-the-art 3DED/MicroED data acquisition equipment by integrating a hybrid-pixel detector with a script developed for Serial EM,and thus successfully developed an automated 3DED/MicroED method for the high-throughput structure determination.To demonstrate its effectiveness,a multiphase sample with complex porous structures is employed,showcasing that individual phases and their structures can be identified and determined,respectively.One remarkable finding is the identification of an impurity metal-organic framework(MOF)that is completely invisible to traditional powder X-ray diffraction in a supposedly“pure”commercial MOF sample.Additionally,our method also enables the atomic-resolution structure determination of flexible covalent organic framework materials,which are highly sensitive to electron beams.Moreover,a new microporous aluminoborate is discovered using this rapid structure determination method.These experimental results highlight the enormous potential of our 3DED/MicroED method in the field of new materials discovery,offering a powerful tool for the structure determination of polycrystalline functional materials. 展开更多
关键词 3DED/microED high-throughput structure determination mixed phase porous materials
原文传递
MicroED as a powerful technique for the structure determination of complex porous materials
17
作者 Chao Ma Cong Lin Jian Li 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2024年第3期41-54,共14页
Porous materials have garnered significant attention in recent years.Understanding the intrinsic relationship between their structures and properties requires precise knowledge of their atomic structures.Single-crysta... Porous materials have garnered significant attention in recent years.Understanding the intrinsic relationship between their structures and properties requires precise knowledge of their atomic structures.Single-crystal X-ray diffraction(SCXRD)has traditionally been the primary method for elucidating such structures,but it demands large,high-quality crystals,often exceeding 5μm in size.The growth of these crystals can be a time-consuming process,especially for one-and two-dimensional materials.To explore structures at the nanoscale,MicroED(microcrystal electron diffraction(ED))offers unprecedented insights into the realm of nanomaterials.This revolutionary technique enables researchers to uncover intricate details within nanoscale structures,promising to reshape our fundamental understanding of materials.In this review,we delve into the applications of MicroED in the study of various porous materials,including zeolites,metal-organic frameworks(MOFs),and covalent organic frameworks(COFs).We emphasize the pivotal role of MicroED in nanomaterial characterization,enabling precise crystallographic analysis and phase identification. 展开更多
关键词 Atomic structure microED Porous materials Three-dimensional electron diffraction
原文传递
Fabrication of micro-nano patterned materials mimicking the topological structure of extracellular matrix for biomedical applications
18
作者 Yifeng Nie Dong Han Xiang Li 《Nano Research》 SCIE EI CSCD 2024年第5期4244-4258,共15页
With the advent of tissue engineering and biomedicine,the creation of extracellular matrix(ECM)biomaterials for in vitro applications has become a prominent and promising strategy.These ECM materials provide physical,... With the advent of tissue engineering and biomedicine,the creation of extracellular matrix(ECM)biomaterials for in vitro applications has become a prominent and promising strategy.These ECM materials provide physical,biochemical,and mechanical properties that guide cellular behaviors,such as proliferation,differentiation,migration,and apoptosis.Because micro-and nano-patterned materials have a unique surface topology and low energy replication process that directly affect cellular biological behaviors at the interface,the fabrication of micro-nano pattern biomaterials and the regulation of surface physical and chemical properties are of great significance in the fields of cell regulation,tissue engineering,and regenerative medicine.Herein,we provide a comprehensive review of the progress in the fabrication and application of patterned materials based on the coupling of mechanical action at the micro-and nano-meter scale,including photolithography,micro-contact printing,electron beam lithography,electrospinning,and 3D printing technology.Furthermore,a summary of the fabrication process,underlying principles,as well as the advantages and disadvantages of various technologies are reviewed.We also discuss the influence of material properties on the fabrication of micro-and nano-patterns. 展开更多
关键词 micro/nano hybrid materials patterning fabrication techniques extracellular matrix substrate-cell interaction biomedical engineering
原文传递
A Study on Nanoscale Infrared Absorbent Working in Waveband Range of 1300-400 cm^(-1) 被引量:1
19
作者 Yongmao HU Jinzhong XIANG +2 位作者 Xueqing ZHANG Ruheng LI Xinghui WU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第5期750-752,共3页
Nanoscale powder of SiO2/Al2O3/TiO2 composite was prepared by sol-gel method. Microstructure and morphology of the obtained samples were characterized by infrared (IR), X-ray diffraction (XRD) analysis and transmi... Nanoscale powder of SiO2/Al2O3/TiO2 composite was prepared by sol-gel method. Microstructure and morphology of the obtained samples were characterized by infrared (IR), X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM). It is proved that infrared absorbing peaks of the samples are in waveband range of 1300-400 cm^-1, and the peak shape changes with their component. Mechanism of the infrared peak's positions and shapes which changes with the size and morphology of the prepared nano-particles has been tentatively discussed. 展开更多
关键词 nanoscale materials Sol-gel method Infrared absorbency
下载PDF
Hydrothermal Synthesis and Properties of Y-zeolite-containing Composite Material with Micro/mesoporous Structure 被引量:3
20
作者 Zhou Jihong Min Enze +3 位作者 Shu Xingtian Zong Baoning Yang Haiying Luo Yibin (State Key Laboratory of Catalytic Material and Reaction Engineering,Research Institute of Petroleum Processing,SINOPEC,Beijing 100083) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2010年第1期1-4,共4页
A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods.... A Y-zeolite-containing composite material with micro/mesoporous structure had been synthesized from kaolin by means of the in-situ crystallization method. The obtained samples were investigated by XRD and BET methods. Evaluation of catalytic activity of both the commercial Y-zeolite and the novel Y-zeolite-containing composite material was carried out in the pulse micro-chromatography platform with two probe molecules of different molecular sizes: VGO feedstock and 1,3,5 tri-isopropyl benzene. It was found that the Y-zeolite-containing composite material was richer in external surface and meso-/macro-pores; the Y-zeolite-containing composite material demonstrated a smaller rate of deactivation compared to the commercial Y-zeolite. 展开更多
关键词 FAUJASITE hydrothermal synthesis Y-zeolite-containing composite material micro/mesoporous structure kaolin
下载PDF
上一页 1 2 100 下一页 到第
使用帮助 返回顶部