The natural exponential potential (Ce^R/λ0) widely exists at micro/nanoscales;this paper studies the interaction potential between a curved-surface body and an outside particle base on the natural exponential potenti...The natural exponential potential (Ce^R/λ0) widely exists at micro/nanoscales;this paper studies the interaction potential between a curved-surface body and an outside particle base on the natural exponential potential. Mat hematical derivation proves t hat the int er act ion potential can be expressed as a function of curvatures. Then, idealized numerical experiments are designed to verify the accuracy of the curvature-based potential. The driving forces exerted on the particle are discussed and confirmed to be a function of curvatures and the gradient of curvatures, which may explain some abnormal movements at micro/nanoscales.展开更多
Phonons are the quantum mechanical descriptions of vibrational modes that manifest themselves in many physical properties of condensed matter systems. As the size of electronic devices continues to decrease below mean...Phonons are the quantum mechanical descriptions of vibrational modes that manifest themselves in many physical properties of condensed matter systems. As the size of electronic devices continues to decrease below mean free paths of acoustic phonons, the engineering of phonon spectra at the nanoscale becomes an important topic. Phonon manipulation allows for active control and management of heat fow, enabling functions such as regulated heat transport. At the same time, phonon transmission, as a novel signal transmission method, holds great potential to revolutionize modern industry like microelectronics technology, and boasts wide-ranging applications. Unlike fermions such as electrons, polarity regulation is difficult to act on phonons as bosons, making the development of effective phonon modulation methods a daunting task.This work reviews the development of phonon engineering and strategies of phonon manipulation at different scales, reports the latest research progress of nanophononic devices such as thermal rectifiers, thermal transistors, thermal memories, and thermoelectric devices,and analyzes the phonon transport mechanisms involved. Lastly, we survey feasible perspectives and research directions of phonon engineering. Thermoelectric analogies, external field regulation, and acousto-optic co-optimization are expected to become future research hotspots.展开更多
The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications.These materials are promising candidates for next-generation photodetectors(...The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications.These materials are promising candidates for next-generation photodetectors(PDs)due to their unique optoelectronic properties and flexible synthesis routes.This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures,including quantum dots,nanosheets,nanorods,nanowires,and nanocrystals.Through a thorough analysis of recent literature,the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation.In addition,it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems.This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability,making it a valuable resource for researchers.展开更多
Understanding the mechanisms of parent-daughter isotopic mobility at the nanoscale is key to rigorous interpretation of Ue The Pb data and associated dating. Until now, all nanoscale geochronological studies on geolog...Understanding the mechanisms of parent-daughter isotopic mobility at the nanoscale is key to rigorous interpretation of Ue The Pb data and associated dating. Until now, all nanoscale geochronological studies on geological samples have relied on either Transmission Electron Microscope(TEM) or Atom Probe Microscopy(APM) characterizations alone, thus suffering from the respective weaknesses of each technique. Here we focus on monazite crystals from a ~1 Ga, ultrahigh temperature granulite from Rogaland(Norway). This sample has recorded concordant UeP b dates(measured by LA-ICP-MS) that range over 100 My, with the three domains yielding distinct isotopic Ue Pb ages of 1034 ± 6 Ma(D1; Srich core), 1005 ± 7 Ma(D2), and 935 ± 7 Ma(D3), respectively. Combined APM and TEM characterization of these monazite crystals reveal phase separation that led to the isolation of two different radiogenic Pb(Pb*) reservoirs at the nanoscale. The S-rich core of these monazite crystals contains Cae Srich clusters, 5 -10 nm in size, homogenously distributed within the monazite matrix with a mean interparticle distance of 40 -60 nm. The clusters acted as a sink for radiogenic Pb(Pb*) produced in the monazite matrix, which was reset at the nanoscale via Pb diffusion while the grain remained closed at the micro-scale. Compared to the concordant ages given by conventional micro-scale dating of the grain,the apparent nano-scale age of the monazite matrix in between clusters is about 100 Myr younger, which compares remarkably well to the duration of the metamorphic event. This study highlights the capabilities of combined APM-TEM nano-structural and nano-isotopic characterizations in dating and timing of geological events, allowing the detection of processes untraceable with conventional dating methods.展开更多
Thermophotovoltaic (TPV) system has been regarded as one promising means to alleviate current energy demand because it can directly generate electricity from radiation heat via photons. However, the presently availa...Thermophotovoltaic (TPV) system has been regarded as one promising means to alleviate current energy demand because it can directly generate electricity from radiation heat via photons. However, the presently available TPV systems suffer from low conversion efficiency and low throughput. A viable solution to increase their efficiency is to apply micro/nanoscale radiation principles in the design of different components to utilize the characteristics ~f thermal radiation at small distances and in microstructures. Several critical issues are reviewed, such as photovoltaic effect, quantum efficiency and efficiency of TPV system. Emphasis is given to the development of wavelength-selective emitters and filters and the aspects of micro/nanoscale heat transfer. Recent progress, along with the challenges and opportunities for future development of TPV systems are also outlined.展开更多
The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the...The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE.展开更多
The quantitative optical measurement of deep sub-wavelength features with sub-nanometer sensitivity addresses the measurement challenge in the semiconductor fabrication process.Optical scatterings from the sidewalls o...The quantitative optical measurement of deep sub-wavelength features with sub-nanometer sensitivity addresses the measurement challenge in the semiconductor fabrication process.Optical scatterings from the sidewalls of patterned devices reveal abundant structural and material information.We demonstrated a parametric indirect microscopic imaging(PIMI)technique that enables recovery of the profile of wavelength-scale objects with deep sub-wavelength resolution,based on measuring and filtering the variations of far-field scattering intensities when the illumination was modulated.The finite-difference time-domain(FDTD)numerical simulation was performed,and the experimental results were compared with atomic force microscopic(AFM)images to verify the resolution improvement achieved with PIMI.This work may provide a new approach to exploring the detailed structure and material properties of sidewalls and edges in semiconductor-patterned devices with enhanced contrast and resolution,compared with using the conventional optical microscopy,while retaining its advantage of a wide field of view and relatively low cost.展开更多
DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation ...DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation studies to both clinical medicine and scientific research.Microflu-idic chips are excellent carriers for molecular analysis,and their use can provide improvements from multiple aspects.On-chip molecular analysis has received extensive attention owing to its advantages of portability,high throughput,low cost,and high efficiency.In recent years,the use of novel microfluidic chips for DNA methylation analysis has been widely reported and has shown obvious superiority to conventional methods.In this review,wefirst focus on DNA methylation and its applications.Then,we discuss advanced microfluidic-based methods for DNA methylation analysis and describe the great progress that has been made in recent years.Finally,we summarize the advantages that microfluidic technology brings to DNA methylation analysis and describe several challenges and perspectives for on-chip DNA methylation analysis.This review should help researchers improve their understanding and make progress in developing microfluidic-based methods for DNA methylation analysis.展开更多
Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.Thi...Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields.展开更多
Flotation separation of calcite from fluorite is a challenge on low-grade fluorite flotation that limits the recovery and purity of fluorite concentrate.A new acid leaching–flotation process for fluorite is proposed ...Flotation separation of calcite from fluorite is a challenge on low-grade fluorite flotation that limits the recovery and purity of fluorite concentrate.A new acid leaching–flotation process for fluorite is proposed in this work.This innovative process raised the fluor-ite’s grade to 97.26wt%while producing nanoscale calcium carbonate from its leachate,which contained plenty of calcium ions.On the production of nanoscale calcium carbonate,the impacts of concentration,temperature,and titration rate were examined.By modifying the process conditions and utilizing crystal conditioning agents,calcite-type and amorphous calcium carbonates with corresponding particle sizes of 1.823 and 1.511μm were produced.The influence of the impurity ions Mn^(2+),Mg^(2+),and Fe^(3+)was demonstrated to reduce the particle size of nanoscale calcium carbonate and make crystal shape easier to manage in the fluorite leach solution system compared with the calcium chloride solution.The combination of the acid leaching–flotation process and the nanoscale calcium carbonate preparation method improved the grade of fluorite while recovering calcite resources,thus presenting a novel idea for the effective and clean usage of low-quality fluorite resources with embedded microfine particles.展开更多
Industries such as non-ferrous metal smelting discharge billions of gallons of highly toxic heavy metal wastewater(HMW)worldwide annually,posing a severe challenge to conventional wastewater treatment plants and harmi...Industries such as non-ferrous metal smelting discharge billions of gallons of highly toxic heavy metal wastewater(HMW)worldwide annually,posing a severe challenge to conventional wastewater treatment plants and harming the environment.HMW is traditionally treated via chemical precipitation using lime,caustic,or sulfide,but the effluents do not meet the increasingly stringent discharge standards.This issue has spurred an increase in research and the development of innovative treatment technologies,among which those using nanoparticles receive particular interest.Among such initiatives,treatment using nanoscale zero-valent iron(nZVI)is one of the best developed.While nZVI is already well known for its site-remediation use,this perspective highlights its application in HMW treatment with metal recovery.We demonstrate several advantages of nZVI in this wastewater application,including its multifunctionality in sequestrating a wide array of metal(loid)s(>30 species);its capability to capture and enrich metal(loid)s at low concentrations(with a removal capacity reaching 500 mg·g^(-1)nZVI);and its operational convenience due to its unique hydrodynamics.All these advantages are attributable to nZVI’s diminutive nanoparticle size and/or its unique iron chemistry.We also present the first engineering practice of this application,which has treated millions of cubic meters of HMW and recovered tons of valuable metals(e.g.,Cu and Au).It is concluded that nZVI is a potent reagent for treating HMW and that nZVI technology provides an eco-solution to this toxic waste.展开更多
基金by the Natural Science Foundation of Jiangsu Province (Nos. BK20180411, BK20180416)the start-up funding awarded by Nanjing University of Aeronautics and Astronautics (Nos. 56SYAH17065, 90YAH17065).
文摘The natural exponential potential (Ce^R/λ0) widely exists at micro/nanoscales;this paper studies the interaction potential between a curved-surface body and an outside particle base on the natural exponential potential. Mat hematical derivation proves t hat the int er act ion potential can be expressed as a function of curvatures. Then, idealized numerical experiments are designed to verify the accuracy of the curvature-based potential. The driving forces exerted on the particle are discussed and confirmed to be a function of curvatures and the gradient of curvatures, which may explain some abnormal movements at micro/nanoscales.
基金supported by the National Natural Science Foundation of China Grant Nos. 52276072 and 51976096。
文摘Phonons are the quantum mechanical descriptions of vibrational modes that manifest themselves in many physical properties of condensed matter systems. As the size of electronic devices continues to decrease below mean free paths of acoustic phonons, the engineering of phonon spectra at the nanoscale becomes an important topic. Phonon manipulation allows for active control and management of heat fow, enabling functions such as regulated heat transport. At the same time, phonon transmission, as a novel signal transmission method, holds great potential to revolutionize modern industry like microelectronics technology, and boasts wide-ranging applications. Unlike fermions such as electrons, polarity regulation is difficult to act on phonons as bosons, making the development of effective phonon modulation methods a daunting task.This work reviews the development of phonon engineering and strategies of phonon manipulation at different scales, reports the latest research progress of nanophononic devices such as thermal rectifiers, thermal transistors, thermal memories, and thermoelectric devices,and analyzes the phonon transport mechanisms involved. Lastly, we survey feasible perspectives and research directions of phonon engineering. Thermoelectric analogies, external field regulation, and acousto-optic co-optimization are expected to become future research hotspots.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.RS-2022–00165798)Anhui Natural Science Foundation(No.2308085MF211)The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under Grant Number(R.G.P.2/491/45).
文摘The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications.These materials are promising candidates for next-generation photodetectors(PDs)due to their unique optoelectronic properties and flexible synthesis routes.This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures,including quantum dots,nanosheets,nanorods,nanowires,and nanocrystals.Through a thorough analysis of recent literature,the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation.In addition,it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems.This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability,making it a valuable resource for researchers.
基金Both UJM and CNRS (INSU TelluS-SYSTER) are thanked for financial support for AMSG and ATL. The Australian Resource Characterisation Facility (ARCF), under the auspices of the National Resource Sciences Precinct (NRSP) - a collaboration between CSIRO, Curtin University and The University of Western Australia e is supported by the Science and Industry Endowment Fund (SIEF RI13-01)
文摘Understanding the mechanisms of parent-daughter isotopic mobility at the nanoscale is key to rigorous interpretation of Ue The Pb data and associated dating. Until now, all nanoscale geochronological studies on geological samples have relied on either Transmission Electron Microscope(TEM) or Atom Probe Microscopy(APM) characterizations alone, thus suffering from the respective weaknesses of each technique. Here we focus on monazite crystals from a ~1 Ga, ultrahigh temperature granulite from Rogaland(Norway). This sample has recorded concordant UeP b dates(measured by LA-ICP-MS) that range over 100 My, with the three domains yielding distinct isotopic Ue Pb ages of 1034 ± 6 Ma(D1; Srich core), 1005 ± 7 Ma(D2), and 935 ± 7 Ma(D3), respectively. Combined APM and TEM characterization of these monazite crystals reveal phase separation that led to the isolation of two different radiogenic Pb(Pb*) reservoirs at the nanoscale. The S-rich core of these monazite crystals contains Cae Srich clusters, 5 -10 nm in size, homogenously distributed within the monazite matrix with a mean interparticle distance of 40 -60 nm. The clusters acted as a sink for radiogenic Pb(Pb*) produced in the monazite matrix, which was reset at the nanoscale via Pb diffusion while the grain remained closed at the micro-scale. Compared to the concordant ages given by conventional micro-scale dating of the grain,the apparent nano-scale age of the monazite matrix in between clusters is about 100 Myr younger, which compares remarkably well to the duration of the metamorphic event. This study highlights the capabilities of combined APM-TEM nano-structural and nano-isotopic characterizations in dating and timing of geological events, allowing the detection of processes untraceable with conventional dating methods.
基金Project(2009AA05Z215) supported by the National High Technology Research and Development Program of China
文摘Thermophotovoltaic (TPV) system has been regarded as one promising means to alleviate current energy demand because it can directly generate electricity from radiation heat via photons. However, the presently available TPV systems suffer from low conversion efficiency and low throughput. A viable solution to increase their efficiency is to apply micro/nanoscale radiation principles in the design of different components to utilize the characteristics ~f thermal radiation at small distances and in microstructures. Several critical issues are reviewed, such as photovoltaic effect, quantum efficiency and efficiency of TPV system. Emphasis is given to the development of wavelength-selective emitters and filters and the aspects of micro/nanoscale heat transfer. Recent progress, along with the challenges and opportunities for future development of TPV systems are also outlined.
基金provided by Science and Technology Development Project of Jilin Province(No.20230101338JC)。
文摘The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE.
基金the National Major Scientific Instruments and Equipment Development Project under Grant No.61827814the National Natural Science Foundation of China(NSFC)under Grant No.61501239+5 种基金the NSFC International Young Scientist Research Fund under Grant No.61750110520the Hubei Polytechnic University Laboratory Fund under Grant No.19XJK24Rthe Jiangsu Postdoc Research Fund under Grant No.1601001Bthe Beijing Natural Science Foundation under Grant No.Z190018the Fundamental Research Funds for the Central Universities under Grant No.30920010011the UK Engineering and Physical Sciences Research Council under Grant No.EP/R042578/1。
文摘The quantitative optical measurement of deep sub-wavelength features with sub-nanometer sensitivity addresses the measurement challenge in the semiconductor fabrication process.Optical scatterings from the sidewalls of patterned devices reveal abundant structural and material information.We demonstrated a parametric indirect microscopic imaging(PIMI)technique that enables recovery of the profile of wavelength-scale objects with deep sub-wavelength resolution,based on measuring and filtering the variations of far-field scattering intensities when the illumination was modulated.The finite-difference time-domain(FDTD)numerical simulation was performed,and the experimental results were compared with atomic force microscopic(AFM)images to verify the resolution improvement achieved with PIMI.This work may provide a new approach to exploring the detailed structure and material properties of sidewalls and edges in semiconductor-patterned devices with enhanced contrast and resolution,compared with using the conventional optical microscopy,while retaining its advantage of a wide field of view and relatively low cost.
基金support from the National Key R&D Program of China(Grant No.2018YFE0118700)the National Natural Science Foundation of China(NSFC Grant No.62174119)+1 种基金the 111 Project(Grant No.B07014)the Foundation for Talent Scientists of Nanchang Institute for Microtechnology of Tianjin University.
文摘DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation studies to both clinical medicine and scientific research.Microflu-idic chips are excellent carriers for molecular analysis,and their use can provide improvements from multiple aspects.On-chip molecular analysis has received extensive attention owing to its advantages of portability,high throughput,low cost,and high efficiency.In recent years,the use of novel microfluidic chips for DNA methylation analysis has been widely reported and has shown obvious superiority to conventional methods.In this review,wefirst focus on DNA methylation and its applications.Then,we discuss advanced microfluidic-based methods for DNA methylation analysis and describe the great progress that has been made in recent years.Finally,we summarize the advantages that microfluidic technology brings to DNA methylation analysis and describe several challenges and perspectives for on-chip DNA methylation analysis.This review should help researchers improve their understanding and make progress in developing microfluidic-based methods for DNA methylation analysis.
基金the National Natural Science Foundation of China(Nos.52374147,42372328,and U23B2091)National Key Research and Development Program of China(No.2023YFC3804200)Xinjiang Uygur Autonomous Region Science and Technology Major Program(No.2023A01002).
文摘Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields.
基金supported by the National Key Research Center and Development Program of the 14th Five-Year Plan,China(No.2022YFC2905105)National Natural Science Foundation of China(Nos.52122406 and 52004337)+2 种基金Hunan High-tech Industry Technology Innovation Leading Plan,China(No.2022GK4056)Hunan Innovative Province Construction Special Project,China(No.2020RC3001)Hunan Postgraduate Research and Innovation Project,China(No.CX20220200).
文摘Flotation separation of calcite from fluorite is a challenge on low-grade fluorite flotation that limits the recovery and purity of fluorite concentrate.A new acid leaching–flotation process for fluorite is proposed in this work.This innovative process raised the fluor-ite’s grade to 97.26wt%while producing nanoscale calcium carbonate from its leachate,which contained plenty of calcium ions.On the production of nanoscale calcium carbonate,the impacts of concentration,temperature,and titration rate were examined.By modifying the process conditions and utilizing crystal conditioning agents,calcite-type and amorphous calcium carbonates with corresponding particle sizes of 1.823 and 1.511μm were produced.The influence of the impurity ions Mn^(2+),Mg^(2+),and Fe^(3+)was demonstrated to reduce the particle size of nanoscale calcium carbonate and make crystal shape easier to manage in the fluorite leach solution system compared with the calcium chloride solution.The combination of the acid leaching–flotation process and the nanoscale calcium carbonate preparation method improved the grade of fluorite while recovering calcite resources,thus presenting a novel idea for the effective and clean usage of low-quality fluorite resources with embedded microfine particles.
基金supported by the National Natural Science Foundation of China(21876131)the National Key Research and Development Program of China(2022YFC3702101)the Foundation of State Key Laboratory of Pollution Control and Resource Reuse of China(PCRRY).
文摘Industries such as non-ferrous metal smelting discharge billions of gallons of highly toxic heavy metal wastewater(HMW)worldwide annually,posing a severe challenge to conventional wastewater treatment plants and harming the environment.HMW is traditionally treated via chemical precipitation using lime,caustic,or sulfide,but the effluents do not meet the increasingly stringent discharge standards.This issue has spurred an increase in research and the development of innovative treatment technologies,among which those using nanoparticles receive particular interest.Among such initiatives,treatment using nanoscale zero-valent iron(nZVI)is one of the best developed.While nZVI is already well known for its site-remediation use,this perspective highlights its application in HMW treatment with metal recovery.We demonstrate several advantages of nZVI in this wastewater application,including its multifunctionality in sequestrating a wide array of metal(loid)s(>30 species);its capability to capture and enrich metal(loid)s at low concentrations(with a removal capacity reaching 500 mg·g^(-1)nZVI);and its operational convenience due to its unique hydrodynamics.All these advantages are attributable to nZVI’s diminutive nanoparticle size and/or its unique iron chemistry.We also present the first engineering practice of this application,which has treated millions of cubic meters of HMW and recovered tons of valuable metals(e.g.,Cu and Au).It is concluded that nZVI is a potent reagent for treating HMW and that nZVI technology provides an eco-solution to this toxic waste.