期刊文献+
共找到225,170篇文章
< 1 2 250 >
每页显示 20 50 100
Role of alloying and heat treatment on microstructure and mechanical properties of cast Al-Li alloys:A review
1
作者 Guo-hua Wu You-jie Guo +4 位作者 Fang-zhou Qi Shen Zhang Yi-xiao Wang Xin Tong Liang Zhang 《China Foundry》 SCIE EI CAS CSCD 2024年第5期445-460,共16页
Due to the prominent advantages of low density,high elastic modulus,high specific strength and specific stiffness,cast Al-Li alloys are suitable metallic materials for manufacturing complex large-sized components and ... Due to the prominent advantages of low density,high elastic modulus,high specific strength and specific stiffness,cast Al-Li alloys are suitable metallic materials for manufacturing complex large-sized components and are ideal structural materials for aerospace,defense and military industries.On the basis of the microstructural characteristics of cast Al-Li alloys,exploring the role of alloying and micro-alloying can stabilize their dominant position and further expand their application scope.In this review,the development progress of cast Al-Li alloys was summarized comprehensively.According to the latest research highlights,the influence of alloying and heat treatment on the microstructure and mechanical properties was systematically analyzed.The potential methods to improve the alloy performance were concluded.In response to the practical engineering requirements of cast Al-Li alloys,the scientific challenges and future research directions were discussed and prospected. 展开更多
关键词 cast Al-Li alloy alloying microstructure mechanical properties heat treatment
下载PDF
Effect of solution treatment on the microstructure,phase transformation behavior and functional properties of NiTiNb ternary shape memory alloys fabricated via laser powder bed fusion in-situ alloying
2
作者 Rui Xi Hao Jiang +5 位作者 Guichuan Li Zhihui Zhang Huiliang Wei Guoqun Zhao Jan Van Humbeeck Xiebin Wang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期202-223,共22页
Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shap... Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shape memory alloy was produced by laser powder bed fusion(L-PBF)using pre-alloyed NiTi and elemental Nb powders.The effect of solution treatment on the microstructure,phase transformation behavior and mechanical/functional performances was investigated.The in-situ alloyed(NiTi)91Nb9 alloy exhibits a submicron cellular-dendritic structure surrounding the supersaturated B2-NiTi matrix.Upon high-temperature(1273 K)solution treatment,Nb-rich precipitates were precipitated from the supersaturated matrix.The fragmentation and spheroidization of the NiTi/Nb eutectics occurred during solution treatment,leading to a morphological transition from mesh-like into rod-like and sphere-like.Coarsening of theβ-Nb phases occurred with increasing holding time.The martensite transformation temperature increases after solution treatment,mainly attributed to:(i)reduced lattice distortion due to the Nb expulsion from the supersaturated B2-NiTi,and(ii)the Ti expulsion from theβ-Nb phases that lowers the ratio Ni/Ti in the B2-NiTi matrix,which resulted from the microstructure changes from non-equilibrium to equilibrium state.The thermal hysteresis of the solutionized alloys is around 145 K after 20%pre-deformation,which is comparable to the conventional NiTiNb alloys.A short-term solution treatment(i.e.at 1273 K for 30 min)enhances the ductility and strength of the as-printed specimen,with the increase of fracture stress from(613±19)MPa to(781±20)MPa and the increase of fracture strain from(7.6±0.1)%to(9.5±0.4)%.Both the as-printed and solutionized samples exhibit good tensile shape memory effects with recovery rates>90%.This work suggests that post-process heat treatment is essential to optimize the microstructure and improve the mechanical performances of the L-PBF in-situ alloyed parts. 展开更多
关键词 shape memory alloy NiTiNb laser powder bed fusion in-situ alloying heat treatment
下载PDF
Review of Sc microalloying effects in Al-Cu alloys
3
作者 Shenghua Wu Chong Yang +7 位作者 Peng Zhang Hang Xue Yihan Gao Yuqing Wang Ruihong Wang Jinyu Zhang Gang Liu Jun Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1098-1114,共17页
Artificially controlling the solid-state precipitation in aluminum (Al) alloys is an efficient way to achieve well-performed properties,and the microalloying strategy is the most frequently adopted method for such a p... Artificially controlling the solid-state precipitation in aluminum (Al) alloys is an efficient way to achieve well-performed properties,and the microalloying strategy is the most frequently adopted method for such a purpose.In this paper,recent advances in lengthscale-dependent scandium (Sc) microalloying effects in Al-Cu model alloys are reviewed.In coarse-grained Al-Cu alloys,the Sc-aided Cu/Sc/vacancies complexes that act as heterogeneous nuclei and Sc segregation at the θ′-Al_(2)Cu/matrix interface that reduces interfacial energy contribute significantly to θ′precipitation.By grain size refinement to the fine/ultrafine-grained scale,the strongly bonded Cu/Sc/vacancies complexes inhibit Cu and vacancy diffusing toward grain boundaries,promoting the desired intragranular θ′precipitation.At nanocrystalline scale,the applied high strain producing high-density vacancies results in the formation of a large quantity of (Cu Sc,vacancy)-rich atomic complexes with high thermal stability,outstandingly improving the strength/ductility synergy and preventing the intractable low-temperature precipitation.This review recommends the use of microalloying technology to modify the precipitation behaviors toward better combined mechanical properties and thermal stability in Al alloys. 展开更多
关键词 aluminum alloy microalloying effect length-scale dependence PRECIPITATION mechanical properties
下载PDF
Role of micro-Ca/In alloying in tailoring the microstructural characteristics and discharge performance of dilute Mg-Bi-Sn-based alloys as anodes for Mg-air batteries
4
作者 Fei-er Shangguan Wei-li Cheng +6 位作者 Yu-hang Chen Ze-qin Cui Hui Yu Hong-xia Wang Li-fei Wang Hang Li Hua Hou 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期251-266,共16页
The influence of micro-Ca/In alloying on the microstructural charac teristics,electrochemical behaviors and discharge properties of extruded dilute Mg-0.5Bi-0.5Sn-based(wt.%)alloys as anodes for Mg-air batteries are e... The influence of micro-Ca/In alloying on the microstructural charac teristics,electrochemical behaviors and discharge properties of extruded dilute Mg-0.5Bi-0.5Sn-based(wt.%)alloys as anodes for Mg-air batteries are evaluated.The grain size and texture intensity of the Mg-Bi-Sn-based alloys are significantly decreased after the Ca/In alloying,particularly for the In-containing alloy.Note that,in addition to nanoscale Mg_(3)Bi_(2)phase,a new microscale Mg_(2)Bi_(2)Ca phase forms in the Ca-containing alloy.The electrochemical test results demonstrate that Ca/In micro-alloying can enhance the electrochemical activity.Using In to alloy the Mg-Bi-Sn-based alloy is effective in restricting the cathodic hydrogen evolution(CHE)kinetics,leading to a low self-corrosion rate,while severe CHE occurred after Ca alloying.The micro-alloying of Ca/In to Mg-Bi-Sn-based alloy strongly deteriorates the compactness of discharge products film and mitigates the"chunk effect"(CE),hence the cell voltage,anodic efficiency as well as discharge capacity are greatly improved.The In-containing alloy exhibits outstanding discharge performance under the combined effect of the modified microstructure and discharge products,thus making it a potential anode material for primary Mg-air battery. 展开更多
关键词 Mg-air batteries Mg-Bi-Sn based alloys Electrochemical behaviors Discharge properties
下载PDF
Effects of the extrusion parameters on microstructure,texture and room temperature mechanical properties of extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy
5
作者 Chenjin Zhang Guangyu Yang +4 位作者 Lei Xiao Zhiyong Kan Jing Guo Qiang Li Wanqi Jie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期136-146,共11页
Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi... Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy. 展开更多
关键词 Mg-rare earth alloys extrusion temperature extrusion ratio extrusion speed strengthening mechanisms
下载PDF
Effects of alloying and deformation on microstructures and properties of Cu-Mg-Te-Y alloys 被引量:5
6
作者 陈亮 周秉文 +3 位作者 韩建宁 薛彦燕 贾非 张兴国 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3697-3703,共7页
New copper alloys with high mechanical properties and high electrical conductivity were prepared, and the effects of addition of minor Mg and Y elements on microstructures and properties were studied. The high tensile... New copper alloys with high mechanical properties and high electrical conductivity were prepared, and the effects of addition of minor Mg and Y elements on microstructures and properties were studied. The high tensile strength of above 510 MPa, high elongation of 11%and high electrical conductivity of over 63%IACS can be simultaneously obtained in Cu-0.47Mg-0.20Te-0.04Y alloy after deforming and annealing treatment. Effects of purification together with the grain refining by Y and solid-solution strengthening by Mg are appropriate for enhancing mechanical properties and electrical conductivity of the copper alloys. 展开更多
关键词 Cu-Mg-Te-Y alloys alloying DEFORMATION mechanical properties electrical conductivity
下载PDF
Microstructure and properties of alloying coating on AZ31B magnesium alloy 被引量:5
7
作者 刘奋军 孟庆森 李增生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第9期2347-2354,共8页
Vacuum thermal diffusion technique was applied to preparing alloying coating on AZ31 B magnesium alloy. The microstructure and phase composition of the coatings prepared at different holding time were investigated in ... Vacuum thermal diffusion technique was applied to preparing alloying coating on AZ31 B magnesium alloy. The microstructure and phase composition of the coatings prepared at different holding time were investigated in detail using optical microscopy(OM), scanning electron microscopy(SEM), energy dispersive spectrometer(EDS) and X-ray diffraction(XRD), and so on. The microhardness tester and electrochemical workstation(PS-168a) were used to measure the microhardness and corrosion resistance of the alloying coating. The results showed that the alloying coatings gradually generated with the extension of holding time under constant temperature. And the obvious bonding interface between the coating and substrate was observed, and the bonding interface was changed from smooth to zigzag. EDS and XRD analyses showed that the microstructure of alloying coating mainly consisted of eutectic α-Mg phase and continuous network β-Al(12)Mg(17) phase. The average microhardness of the coatings increased by 113% in comparison to the substrate, and the self-corrosion potential increased from-1.389 to-1.268 V at the same time. 展开更多
关键词 AZ31B magnesium alloy vacuum diffusion surface alloying microHARDNESS corrosion resistance
下载PDF
Mechanical alloying and subsequent annealing effects on evolution of microstructure and morphology of TiH_2-Ni powders
8
作者 赵相玉 马立群 +1 位作者 丁毅 沈晓冬 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期512-516,共5页
Mechanical alloying and subsequent annealing treatment were carried out to investigate the evolution of the microstructure and morphology of the TiH2-Ni system. The Ni(Ti) solid solution was formed in the initial mi... Mechanical alloying and subsequent annealing treatment were carried out to investigate the evolution of the microstructure and morphology of the TiH2-Ni system. The Ni(Ti) solid solution was formed in the initial milling process. When the milling time was 60 h, the alloy with uniform elemental distribution showed an amorphous structure containing a small amount of TiH2 nanocrystalline phase. The annealing treatment at 693 K contributed to a completion of amorphization for the alloy milled for 60 h. For the treatment at 1 073 K, a crystallization reaction for the amorphous phase occurred, leading to the formation of Ti2Ni, TiNi, and TiNi3 compounds by a short time treatment. Moreover, a separation of Ni-rich phases from the matrix and a phase transition among these three compounds occur by a long time treatment. 展开更多
关键词 Ti-Ni alloy amorphous alloy ANNEALING microSTRUCTURE
下载PDF
Effect of mechanical alloying and sintering process on microstructure and mechanical properties of Al-Ni-Y-Co-La alloy 被引量:4
9
作者 原燕波 王志伟 +3 位作者 郑瑞晓 郝晓宁 Kei AMEYAMA 马朝利 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2251-2257,共7页
Al86Ni7Y4.5Co1La1.5 (mole fraction, %) alloy powder was produced by argon gas atomization process. After high-energy ball milling, the powder was consolidated by vacuum hot press sintering and spark plasma sintering... Al86Ni7Y4.5Co1La1.5 (mole fraction, %) alloy powder was produced by argon gas atomization process. After high-energy ball milling, the powder was consolidated by vacuum hot press sintering and spark plasma sintering (SPS) under different process conditions. The microstructure and morphology of the powder and consolidated bulk sample were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is shown that amorphous phase appears when ball milling time is more than 100 h, and the bulk sample consolidated by SPS can maintain amorphous/ nanocrystalline microstructure but has lower relative density. A compressive strength of 650 MPa of Al86Ni7Y4.5Co1La1.5 nanostructured samples is achieved by vacuum hot extrusion (VHE). 展开更多
关键词 mechanical alloying aluminum alloy nanocrystalline alloy AMORPHOUS spark plasma sintering hot extrusion
下载PDF
不同方法对根管内氢氧化钙去除效果的micro-CT评价 被引量:1
10
作者 伍甜甜 韩艳彦 汪轶 《上海口腔医学》 CAS 2024年第3期225-228,共4页
目的:应用显微CT(micro-computed tomography,micro-CT)建立磨牙根管模型,评价不同方法对氢氧化钙的清除效率。方法:收集2023年10月—2024年2月口腔综合科门诊拔除的11颗磨牙(24个根管),按照标准根管治疗流程,镍钛器械预备完成后,在根... 目的:应用显微CT(micro-computed tomography,micro-CT)建立磨牙根管模型,评价不同方法对氢氧化钙的清除效率。方法:收集2023年10月—2024年2月口腔综合科门诊拔除的11颗磨牙(24个根管),按照标准根管治疗流程,镍钛器械预备完成后,在根管内置入氢氧化钙,1周后,根据不同冲洗方法将样本随机分为侧方开口注射器组、超声荡洗组(EMS组)和声波震荡组(EDDY组)等3组(n=8)。冲洗前后使用micro-CT重建根管系统并使用不同颜色标记独立根管,计算各个根管氢氧化钙体积,比较各组氢氧化钙清除率。采用SPSS 19.0软件包对数据进行统计学分析。结果:3种方法均无法完全去净根管内氢氧化钙。使用次氯酸钠作为冲洗液时,超声荡洗和声波震荡清除效果优于侧方开口冲洗器(P<0.05);超声荡洗和声波震荡去除氢氧化钙效率相当,差异无统计学意义(P>0.05);氢氧化钙残留部位集中于根尖区。结论:Micro-CT能较为高效地重建磨牙根管模型,可用于评价氢氧化钙去除效果。超声荡洗组和声波震荡组清除氢氧化钙效率相当,优于侧方开口注射器组。 展开更多
关键词 micro-CT 氢氧化钙 超声荡洗 声波震荡 EMS EDDY
下载PDF
Micro LED车灯投影光学系统设计与优化 被引量:1
11
作者 李香兰 金霞 +7 位作者 吕金光 郑凯丰 陈宇鹏 赵百轩 赵莹泽 秦余欣 王惟彪 梁静秋 《中国光学(中英文)》 EI CAS CSCD 北大核心 2024年第1期89-99,共11页
本文提出了一种基于Micro LED阵列的车灯投影方案,设计了以像素尺寸为80μm×80μm的200×150白光Micro LED阵列作为显示光源,视场角为16°×34°的车灯投影光学系统,并对物面倾斜角度和光学系统结构进行了优化。此... 本文提出了一种基于Micro LED阵列的车灯投影方案,设计了以像素尺寸为80μm×80μm的200×150白光Micro LED阵列作为显示光源,视场角为16°×34°的车灯投影光学系统,并对物面倾斜角度和光学系统结构进行了优化。此外,分别采用反向畸变处理方法和像素灰度调制方法用以解决车灯投影图像的梯形畸变和照度均匀性问题,并搭建了投影实验平台,对图像校正方法进行了验证。实验结果表明:校正后图像梯形畸变系数p1,p2分别从0.0932和0.3680下降至0.0835和0.0373,像面照度均匀性从83.2%提高到93.2%。本文通过对基于Micro LED的倾斜投影车灯光学系统进行优化设计及采用图像校正方法,实现了高光效、低畸变的车灯投影。 展开更多
关键词 车灯投影光学系统 光学设计 micro LED 照度均匀性 梯形畸变
下载PDF
Fabrication of high strength conductivity submicron crystalline Cu 5%Cr alloy by mechanical alloying 被引量:6
12
作者 胡连喜 王晓林 王尔德 《中国有色金属学会会刊:英文版》 CSCD 2000年第2期209-212,共4页
Cu 5%Cr alloy bulk material with submicron grains were fabricated by mechanical alloying and subsequent hot hydrostatic extrusion. The microstructure, mechanical properties and electrical conductivity of the alloy wer... Cu 5%Cr alloy bulk material with submicron grains were fabricated by mechanical alloying and subsequent hot hydrostatic extrusion. The microstructure, mechanical properties and electrical conductivity of the alloy were experimentally investigated, and the influence of the extrusion temperature on its microstructure and properties was made clear. Also, the strengthening mechanism of the alloy was discussed. It was revealed that the microstructure of the alloy is very fine, with an average grain size being about 100~120 nm, and thus possesses significant fine grain strengthening effect, leading to very high mechanical strength of 800~1 000 MPa. Meanwhile, the alloy also possesses quite good electrical conductivity and moderate tensile elongation, with the former in the range of 55%~70%(IACS) and the latter about 5% respectively. 展开更多
关键词 mechanical alloying SUBmicroN CRYSTALLINE CU CR alloys HYDROSTATIC extrusion
下载PDF
Microstructure, thermal properties, and corrosion behaviors of FeSiBAlNi alloy fabricated by mechanical alloying and spark plasma sintering 被引量:4
13
作者 Hong-lei Wang Tai-xiu Gao +3 位作者 Jia-zheng Niu Pei-jian Shi Jing Xu Yan Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第1期77-82,共6页
An equiatomic FeSiBAlNi amorphous high-entropy alloy (HEA) was fabricated by mechanical alloying (MA). A fully amorphous phase was obtained in the FeSiBAlNi HEA after 240 h of MA. The bulk FeSiBAlNi samples were s... An equiatomic FeSiBAlNi amorphous high-entropy alloy (HEA) was fabricated by mechanical alloying (MA). A fully amorphous phase was obtained in the FeSiBAlNi HEA after 240 h of MA. The bulk FeSiBAlNi samples were sintered by spark plasma sintering (SPS) at 520 and 1080℃ under a pressure of 80 MPa. The sample sintered at 520℃ exhibited an amorphous composite structure comprising solid-solution phases (body-centered cubic (bcc) and face-centered cubic (fee) phases). When the as-milled amorphous HEA was consoli- dated at 1080℃, another fcc phase appeared and the amorphous phase disappeared. The sample sintered by SPS at 1080℃ exhibited a slightly higher melting temperature compared with those of the as-milled alloy and the bulk sample sintered at 520℃. The corrosion behav- iors of the as-sintered samples were investigated by potentiodynamic polarization measurements and immersion tests in seawater solution. The results showed that the HEA obtained by SPS at 1080℃ exhibited better corrosion resistance than that obtained by SPS at 520℃. 展开更多
关键词 high entropy alloys spark plasma sintering mechanical alloying microSTRUCTURE corrosion resistance
下载PDF
Effects of Sc and Zr microalloying on the microstructure and mechanical properties of high Cu content 7xxx Al alloy 被引量:6
14
作者 Chong-yu Liu Guang-biao Teng +3 位作者 Zong-yi Ma Li-li Wei Bing Zhang Yong Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第12期1559-1569,共11页
The effects of Sc and Zr microalloying on the microstructure and mechanical properties of a 7xxx Al alloy with high Cu content(7055)during casting,deformation,and heat treatment were investigated.The addition of Sc an... The effects of Sc and Zr microalloying on the microstructure and mechanical properties of a 7xxx Al alloy with high Cu content(7055)during casting,deformation,and heat treatment were investigated.The addition of Sc and Zr not only refined the grains but also transformed theθ-phase into the W-phase in the 7055 alloy.Minor Sc and Zr additions enhanced the hardness and yield strength of the 7055-T6 alloy by strengthening the grain boundaries and Al3(Sc,Zr)precipitates.However,a further increase in the Sc and Zr fractions did not refine the grains but instead resulted in the formation of the large-sized W-phase and primary coarse Al3(Sc,Zr)phase and subsequently deteriorated the mechanical properties of the alloys.The 7055 alloy with 0.25Sc addition exhibited the best mechanical property among the prepared alloys. 展开更多
关键词 aluminum alloys microSTRUCTURAL evolution mechanical PROPERTY GRAIN REFINEMENT
下载PDF
Effects of rare earth La on the microstructure and melting property of(Ag-Cu_(28))-30Sn alloys prepared by mechanical alloying 被引量:6
15
作者 LI Liangfeng QIU Tai +1 位作者 YANG Jian FENG Yongbao 《Rare Metals》 SCIE EI CAS CSCD 2011年第1期49-52,共4页
To obtain novel intermediate temperature alloy solders with a melting temperature of 400-600°C,nominal(Ag-Cu28)-30Sn alloys without or with a trace addition(0.5 or 1.0 wt.%) of rare earth(RE) element La wer... To obtain novel intermediate temperature alloy solders with a melting temperature of 400-600°C,nominal(Ag-Cu28)-30Sn alloys without or with a trace addition(0.5 or 1.0 wt.%) of rare earth(RE) element La were prepared by mechanical alloying.The aim of this research is to investigate the effects of the addition of La on the microstructures,alloying process and melting properties of(Ag-Cu28)-30Sn alloys.The results show that the addition of La produces no new phase.A trace amount of La addition can effectively refine the grain size,but the excessive addition of 1.0 wt.% La inhibits the alloying process.The influence of La on the melting temperatures of solder alloys is negligible.However,the trace addition of 0.5 wt.% La can distinctly reduce the fusion zone and improve the melting property of(Ag-Cu28)-30Sn alloys. 展开更多
关键词 solders rare earths mechanical alloying microSTRUCTURE MELTING
下载PDF
Effects of Mechanical Alloying Parameters on the Microstructures of Nanocrystalline Cu-5 wt% Cr Alloy 被引量:3
16
作者 史昆玉 薛丽红 +1 位作者 YAN Youwei SHEN Tao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第1期192-195,共4页
Nanocrystalline Cu-5 wt%Cr alloy powders were fabricated by mechanical alloying (MA), The effects of MA processing parameters on the crystallite size, solid solubility, and microstructures of the Cu- 5 wt%Cr alloys ... Nanocrystalline Cu-5 wt%Cr alloy powders were fabricated by mechanical alloying (MA), The effects of MA processing parameters on the crystallite size, solid solubility, and microstructures of the Cu- 5 wt%Cr alloys were investigated including type and size distribution of the grinding medium and ball-topowder weight ratio (BPR). The results show that the crystallites were refined effectively and solid solubility of Cr in Cu was extended when heavier ball and higher BPR were adopted. The maximum solubility is extended up to 5.6 at% (namely 4.6 wt%) Cr in Cu by use of a combination of large and small size WC-Co balls with BPR of 30:1. A Cn-5 wt%Cr supersaturated solid solution alloy bulk is obtained by spark plasma sintering the as-milled powders at 900 ℃ for 5 min. 展开更多
关键词 mechanical alloying Cu-Cr alloys NANOCRYSTALLINE solid solubility
下载PDF
Morphology and microstructure characterization of 95W-3.5Ni-1.5Fe powder prepared by mechanical alloying 被引量:4
17
作者 Islam S. Humail 《Journal of University of Science and Technology Beijing》 CSCD 2006年第5期442-445,共4页
The mechanism of mechanical solid-state reactions for formation of tungsten heavy alloy powder was discussed. A highenergy ball mill operating at room temperature was used for preparing tungsten heavy alloy powders, s... The mechanism of mechanical solid-state reactions for formation of tungsten heavy alloy powder was discussed. A highenergy ball mill operating at room temperature was used for preparing tungsten heavy alloy powders, starting from elemental tungsten (W), nickel (Ni), and iron (Fe) powders. X-ray diffraction (XRD), particle size analyzer, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to follow the progress of the mechanical solid-state reaction of W, Ni, and Fe powders. These morphological studies revealed three stages in the milling process. In the first stage, the particle deformation changes the irregular structure of the as-received powder particles to flattened morphology, and the average particle size increases. In the second stage, the powder is sufficiently deformed and the tendency to fracture predominates over welding, and the particle size decreases. With continuous milling, the system reaches steady state, and relatively small and uniform particle size distribution is obtained after 20 h of milling. 展开更多
关键词 tungsten heavy alloys mechanical alloying particle size MORPHOLOGY
下载PDF
Sr Microalloying for Refining Grain Size of AZ91D Magnesium Alloy 被引量:7
18
作者 潘义川 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第1期74-76,共3页
The grain refining process of an AZ91D Mg alloy by Sr addition was studied and the heterogeneous nucleating particles of α-Mg were investigated by electron probe microanalysis (EPMA). With 0.6 wt% Sr addition, the ... The grain refining process of an AZ91D Mg alloy by Sr addition was studied and the heterogeneous nucleating particles of α-Mg were investigated by electron probe microanalysis (EPMA). With 0.6 wt% Sr addition, the mean grain size of AZ91D alloy was refined from 235.4μm to 52.5 μm at the one-half radius of the ingot. The morphology of primary crystal changed from a sixford symmetrical shape to a petallike shape, Mg-Sr-Al-Fe-Mn heterogeneous nucleating particles were observed at the grain centers and Sr solute atoms presented segregation along the grain boundaries. Grain refinement was facilitated by both the Mg-Sr-Al- Fe-Mn nucleating particles and the Sr solute atoms, and the former played a dominate role in the process. 展开更多
关键词 AZ91D Mg alloy grain refinement STRONTIUM heterogeneous nucleation
下载PDF
Alloying design and microstructural control strategies towards developing Mg alloys with enhanced ductility 被引量:10
19
作者 Zhong-Zheng Jin Min Zha +4 位作者 Si-Qing Wang Shi-Chao Wang Cheng Wang Hai-Long Jia Hui-Yuan Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第5期1191-1206,共16页
Nowadays,magnesium(Mg)alloys are promising lightweight structural materials,especially in transportation and aerospace fields,due to their inherent low density and high specific strength.Most of the high-strength Mg a... Nowadays,magnesium(Mg)alloys are promising lightweight structural materials,especially in transportation and aerospace fields,due to their inherent low density and high specific strength.Most of the high-strength Mg alloys exhibit poor formability and ductility at room temperature,which limit their wide applications.However,by proper alloying design and/or delicate microstructural control,some newly developed Mg alloys,including rare-earth(RE)and RE-free ones,show enhanced ductility without significant loss of strength.To identify the critical reasons,recent researches on ductile Mg alloys have been reviewed from the aspects of alloying design strategies and microstructural control via advanced processing technologies.Moreover,some outlooks on enhanced ductility of Mg alloys are suggested,e.g.enhancing the beneficial effect of solute atoms,introducing second phase particles,tailoring bimodal-grained structures,introducing pre-twinning structures,etc.The current research progresses in alloying design and/or novel microstructural control have shed some lights on designing and producing Mg alloys with enhanced ductility. 展开更多
关键词 Mg alloys alloying microSTRUCTURE DUCTILITY STRENGTH
下载PDF
Effects of Alloying Elements on the Microstructures and Mechanical Properties of Heavy Section Ductile Cast Iron 被引量:14
20
作者 G.S.Cho K.H.Choe +1 位作者 K.W.Lee A.Ikenaga 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第1期97-101,共5页
The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Mea... The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Measurements of ultimate tensile strength, 0.2% proof strength, elongation and unnotched Charpy impact energy are presented as a function of alloy amounts within 0.25 to 0.75 wt pct range. Hardness is measured on the broken tensile specimens. The small additions of Mo, Cu, Ni and Cr changed the as-cast mechanical properties owing to the different as-cast matrix microstructures. The ferrite matrix of Mo and Ni alloyed cast iron exhibits low strength and hardness as well as high elongation and impact energy. The increase in Mo and Ni contents developed some fractions of pearlite structures near the austenite eutectic cell boundaries, which caused the elongation and impact energy to drop in a small range. Adding Cu and Cr elements rapidly changed the ferrite matrix into pearlite matrix, so strength and hardness were significantly increased. As more Mo and Cr were added, the size and fraction of primary carbides in the eutectic cell boundaries increased through the segregation of these elements into the intercellular boundaries. 展开更多
关键词 Heavy section ductile cast iron alloying elements As-cast microstructures As-cast mechanical properties
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部