期刊文献+
共找到100,006篇文章
< 1 2 250 >
每页显示 20 50 100
Mass-Based Environmental Factor and Energy Assessment of Microwave-Assisted Synthesized Transition Metal Nanostructures
1
作者 Victor J. Law 《American Journal of Analytical Chemistry》 CAS 2024年第6期201-218,共18页
This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy... This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy budget (measured in kJ) on the horizontal axes and process density (measured in kJg−1) on the vertical axes. These two axes allow both mass usage efficiency (Environmental-Factor) and energy efficiency to be evaluated for a range of microwave applicator and metal synthesis. The metrics are allied to the: second, sixth and eleventh principle of the twelve principle of Green Chemistry. This analytical approach to microwave synthesis (widely considered as a useful Green Chemistry energy source) allows a quantified dynamic environmental quotient to be given to renewable plant-based biomass associated with the reduction of the metal precursors. Thus allowing a degree of quantification of claimed “eco-friendly” and “sustainable” synthesis with regard to waste production and energy usage. 展开更多
关键词 microwave-Assisted Synthesis Transition Metals nanostructures Allometry Scaling Power-Law Signature Green Chemistry
下载PDF
Improved Flexible Triboelectric Nanogenerator Based on Tile-Nanostructure for Wireless Human Health Monitor 被引量:1
2
作者 Huamin Chen Shujun Guo +9 位作者 Shaochun Zhang Yu Xiao Wei Yang Zhaoyang Sun Xu Cai Run Fang Huining Wang Yun Xu Jun Wang Zhou Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期386-395,共10页
Triboelectric nanogenerators(TENGs)have emerged as promising candidates for integrating with flexible electronics as self-powered systems owing to their intrinsic flexibility,biocompatibility,and miniaturization.In th... Triboelectric nanogenerators(TENGs)have emerged as promising candidates for integrating with flexible electronics as self-powered systems owing to their intrinsic flexibility,biocompatibility,and miniaturization.In this study,an improved flexible TENG with a tile-nanostructured MXene/polymethyl methacrylate(PMMA)composite electrode(MP-TENG)is proposed for use in wireless human health monitor.The multifunctional tile-nanostructured MXene/PMMA film,which is self-assembled through vacuum filtration,exhibits good conductivity,excellent charge capacity,and high flexibility.Thus,the MXene/PMMA composite electrode can simultaneously function as a charge-generating,charge-trapping,and charge-collecting layer.Furthermore,the charge-trapping capacity of a tile nanostructure can be optimized on the basis of the PMMA concentration.At a mass fraction of 4%PMMA,the MP-TENG achieves the optimal output performance,with an output voltage of 37.8 V,an output current of 1.8μA,and transferred charge of 14.1 nC.The output power is enhanced over twofold compared with the pure MXene-based TENG.Moreover,the MP-TENG has sufficient power capacity and durability to power small electronic devices.Finally,a wireless human motion monitor based on the MP-TENG is utilized to detect physiological signals in various kinematic motions.Consequently,the proposed performance-enhanced MP-TENG proves a considerable potential for use in health monitoring,telemedicine,and self-powered systems. 展开更多
关键词 flexible electrode MXene tile nanostructure triboelectric nanogenerator wireless monitor
下载PDF
Ambient-Condition Strategy for Production of Hollow Ga_(2)O_(3)@rGO Crystalline Nanostructures Toward Efficient Lithium Storage 被引量:1
3
作者 Dongdong Zhang Qiliang Wei +7 位作者 Haili Huang Lan Jiang Jie Teng Ruizhi Yu Qing Zhang Shengxing Liu Lin Wang Weiyou Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期75-82,共8页
Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanosphe... Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanospheres encapsulated by reduced graphene oxide(rGO)nanolayers,and their formation is mainly attributed to the existed opposite zeta potential between the Ga_(2)O_(3)and rGO.The as-constructed lithium-ion batteries(LIBs)based on as-fabricatedγ-Ga_(2)O_(3)@rGO nanostructures deliver an initial discharge capacity of 1000 mAh g^(-1)at 100 mA g^(-1)and reversible capacity of 600 mAh g^(-1)under 500 mA g^(-1)after 1000 cycles,respectively,which are remarkably higher than those of pristineγ-Ga_(2)O_(3)with a much reduced lifetime of 100 cycles and much lower capacity.Ex situ XRD and XPS analyses demonstrate that the reversible LIBs storage is dominant by a conversion reaction and alloying mechanism,where the discharged product of liquid metal Ga exhibits self-healing ability,thus preventing the destroy of electrodes.Additionally,the rGO shell could act robustly as conductive network of the electrode for significantly improved conductivity,endowing the efficient Li storage behaviors.This work might provide some insight on mass production of advanced electrode materials under mild condition for energy storage and conversion applications. 展开更多
关键词 ambient condition core-shell nanostructures Ga_(2)O_(3) Li-ion batteries rGO
下载PDF
Formation of Natural Melanin/TiO_(2) Nanostructure Hybrids with Enhanced Optical,Thermal and Magnetic Properties as a Soft Material
4
作者 Saja Algessair Nawal Madkhali 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期613-620,共8页
The natural Melanin/TiO_(2) was synthesized by the use of ultrasonication under UV radiation.The influence of natural melanin on the structural,optical and thermal properties of TiO_(2) nanoparticles was investigated ... The natural Melanin/TiO_(2) was synthesized by the use of ultrasonication under UV radiation.The influence of natural melanin on the structural,optical and thermal properties of TiO_(2) nanoparticles was investigated by using Fourier transform infrared spectroscopy,thermogravimetric analysis and UV-Vis spectroscopy.It was observed that incorporating natural melanin on TiO_(2) nanoparticles(TiO_(2)-Mel)occurred at 2.01 eV with a low value of Urbach energy around 100 meV indicating improvement in the crystalline structure.Magnetic measurement at room temperature showed diamagnetic behavior.Furthermore,thermal results showed that TiO_(2)-Mel is stable even at temperatures up to 400℃.According to the results obtained by the thermal stability of melanin with titanium dioxide,it can be a good candidate in many applications such as solar cells and optoelectronics. 展开更多
关键词 natural melanin/TiO_(2) thermal stability OPTOELECTRONIC nanostructure UV radiation
下载PDF
Generating micro/nanostructures on magnesium alloy surface using ultraprecision diamond surface texturing process
5
作者 Hanheng Du Mengnan Jiang +2 位作者 Zuankai Wang Zhiwei Zhu Suet To 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1472-1483,共12页
The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flamm... The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flammability and ignition.Motivated by this,this study proposed a machining process,named the ultraprecision diamond surface texturing process,to machine the micro/nanostructures on magnesium alloy surfaces.Experimental results showed the various microstructures and sawtooth-shaped nanostructures were successfully generated on the AZ31B magnesium alloy surfaces,demonstrating the effectiveness of this proposed machining process.Furthermore,sawtooth-shaped nanostructures had the function of inducing the optical effect and generating different colors on workpiece surfaces.The colorful letter and colorful flower image were clearly viewed on magnesium alloy surfaces.The corresponding cutting force,chip morphology,and tool wear were systematically investigated to understand the machining mechanism of micro/nanostructures on magnesium alloy surfaces.The proposed machining process can further improve the performances of the magnesium alloy and extend its functions to other fields,such as optics. 展开更多
关键词 Magnesium alloy micro/nanostructure Ultraprecision diamond surface texturing Cutting force Chip morphology Structural color
下载PDF
Preparation and characterization of a nanostructured lipid carrier for phenylethyl resorcinol
6
作者 Danyang Zheng Lihua Cai +4 位作者 Mengyi Xu Shihao Lan Yongchuang Zhu Shengzhao Gong Wanxian Liang 《Journal of Dermatologic Science and Cosmetic Technology》 2024年第3期20-31,共12页
Phenylethyl resorcinol(PR)demonstrates inhibitory effects on multiple targets in the melanin synthesis pathway,resulting in a strong whitening effect.However,challenges such as limited solubility in water and suscepti... Phenylethyl resorcinol(PR)demonstrates inhibitory effects on multiple targets in the melanin synthesis pathway,resulting in a strong whitening effect.However,challenges such as limited solubility in water and susceptibility to oxidation and discoloration restrict its practical application in the cosmetics industry.In order to enhance stability and performance characteristics,a whitening nanostructured lipid carrier(NLC)was synthesized through high-pressure homogenization.This method entailed the incorporation of solid lipids,a liquid lipid,and a compound emulsifier,with deionized water fulfilling the roles of solid phase,liquid phase,and water phase,respectively.The NLC's particle size,Zeta potential,stability,encapsulation efficiency,and other parameters were assessed using techniques such as particle sizer,stability analyzer,and HPLC.The results showed that the NLC for phenylethyl resorcinol prepared by using the optimal formula(7.50%solid lipids,3.00%ethylhexyl palmitate,and 2.00%Tween 80 and soybean lecithin)has an encapsulation efficiency of 87.11%,a particle size of 157.2±0.70 nm,a kinetic instability of less than 1.2,and a greatly improved stability,thereby successfully solving the problems of unstable storage and poor solubility of phenylethyl resorcinol. 展开更多
关键词 Phenylethyl resorcinol STABILITY Particle size Encapsulation efficiency nanostructured lipid carrier
下载PDF
Green Chemistry Allometry Test of Microwave-Assisted Synthesis of Transition Metal Nanostructures
7
作者 Victor J. Law Denis P. Dowling 《American Journal of Analytical Chemistry》 CAS 2023年第11期493-518,共26页
Microwave irradiation is considered an important approach to Green Chemistry, because of its ability to rapidly increase the internal temperature of polar-organic compounds that lead to synthesis times of minutes rath... Microwave irradiation is considered an important approach to Green Chemistry, because of its ability to rapidly increase the internal temperature of polar-organic compounds that lead to synthesis times of minutes rather than hours when compared to conventional thermal heating. This works describes a dual allometry test for the discrimination between the solvents and reagents used in the microwave-assisted synthesis of transition metal (zinc oxide, palladium silver, platinum, and gold) nanostructures. The test is performed in log-log process energy phase-space projection, where the synthesis data (kJ against kJ·mol<sup>-1</sup>) has a power-law signature. The test is shown to discriminate between recommended Green Chemistry, problematic Green Chemistry, and Green Chemistry hazardous solvents. Typically, recommended Green chemistry exhibits a broad y-axes distribution within an upper exponent = 1 and lower exponent = 0.5. Problematic Green Chemistry exhibits a y-axes narrower distribution with an upper exponent = 0.94 and lower exponent = 0.64. Non-Green Chemistry hazardous data exhibits a further narrowing of the y-axes distribution within upper exponent = 0.87 and lower exponent = 0.66. In all three cases, the y-axes is aligned to original database power-law signature. It is also shown that in the x-axes direction (process energy budget) the grouped order of magnitude decreases from four orders for recommended Green Chemistry solvent and reagent data, through two orders for non-Green Chemistry hazardous material and down to one order for problematic Green Chemistry. 展开更多
关键词 microwave-Assisted Synthesis Transition Metals nanostructures Allometry Scaling Power-Law Signature Green Chemistry
下载PDF
Development of micro/nanostructured‒based biomaterials with biomedical applications
8
作者 AFAF ALHARTHI 《BIOCELL》 SCIE 2023年第8期1743-1755,共13页
Natural biomaterials are now frequently used to build biocarrier systems,which can carry medications and biomolecules to a target region and achieve a desired therapeutic effect.Biomaterials and polymers are of great ... Natural biomaterials are now frequently used to build biocarrier systems,which can carry medications and biomolecules to a target region and achieve a desired therapeutic effect.Biomaterials and polymers are of great importance in the synthesis of nanomaterials.The recent studies have tended to use these materials because they are easily obtained from natural sources such as fungi,algae,bacteria,and medicinal plants.They are also biodegradable,compatible with neighborhoods,and non-toxic.Natural biomaterials and polymers are chemically changed when they are linked by cross linking agents with other polymers to create scaffolds,matrices,composites,and interpenetrating polymer networks employing microtechnology and nanotechnology.This review highlights how microengineered and nanoengineered biomaterials are utilized to produce efficient drug-delivery systems and biomedical and biological therapies and how innovative sources of biomaterials have been identified. 展开更多
关键词 micro/Nanoparticles BIOMATERIALS Green synthesis microORGANISMS ALGAE Medicinal plants
下载PDF
不同方法对根管内氢氧化钙去除效果的micro-CT评价 被引量:1
9
作者 伍甜甜 韩艳彦 汪轶 《上海口腔医学》 CAS 2024年第3期225-228,共4页
目的:应用显微CT(micro-computed tomography,micro-CT)建立磨牙根管模型,评价不同方法对氢氧化钙的清除效率。方法:收集2023年10月—2024年2月口腔综合科门诊拔除的11颗磨牙(24个根管),按照标准根管治疗流程,镍钛器械预备完成后,在根... 目的:应用显微CT(micro-computed tomography,micro-CT)建立磨牙根管模型,评价不同方法对氢氧化钙的清除效率。方法:收集2023年10月—2024年2月口腔综合科门诊拔除的11颗磨牙(24个根管),按照标准根管治疗流程,镍钛器械预备完成后,在根管内置入氢氧化钙,1周后,根据不同冲洗方法将样本随机分为侧方开口注射器组、超声荡洗组(EMS组)和声波震荡组(EDDY组)等3组(n=8)。冲洗前后使用micro-CT重建根管系统并使用不同颜色标记独立根管,计算各个根管氢氧化钙体积,比较各组氢氧化钙清除率。采用SPSS 19.0软件包对数据进行统计学分析。结果:3种方法均无法完全去净根管内氢氧化钙。使用次氯酸钠作为冲洗液时,超声荡洗和声波震荡清除效果优于侧方开口冲洗器(P<0.05);超声荡洗和声波震荡去除氢氧化钙效率相当,差异无统计学意义(P>0.05);氢氧化钙残留部位集中于根尖区。结论:Micro-CT能较为高效地重建磨牙根管模型,可用于评价氢氧化钙去除效果。超声荡洗组和声波震荡组清除氢氧化钙效率相当,优于侧方开口注射器组。 展开更多
关键词 micro-CT 氢氧化钙 超声荡洗 声波震荡 EMS EDDY
下载PDF
Micro LED车灯投影光学系统设计与优化 被引量:1
10
作者 李香兰 金霞 +7 位作者 吕金光 郑凯丰 陈宇鹏 赵百轩 赵莹泽 秦余欣 王惟彪 梁静秋 《中国光学(中英文)》 EI CAS CSCD 北大核心 2024年第1期89-99,共11页
本文提出了一种基于Micro LED阵列的车灯投影方案,设计了以像素尺寸为80μm×80μm的200×150白光Micro LED阵列作为显示光源,视场角为16°×34°的车灯投影光学系统,并对物面倾斜角度和光学系统结构进行了优化。此... 本文提出了一种基于Micro LED阵列的车灯投影方案,设计了以像素尺寸为80μm×80μm的200×150白光Micro LED阵列作为显示光源,视场角为16°×34°的车灯投影光学系统,并对物面倾斜角度和光学系统结构进行了优化。此外,分别采用反向畸变处理方法和像素灰度调制方法用以解决车灯投影图像的梯形畸变和照度均匀性问题,并搭建了投影实验平台,对图像校正方法进行了验证。实验结果表明:校正后图像梯形畸变系数p1,p2分别从0.0932和0.3680下降至0.0835和0.0373,像面照度均匀性从83.2%提高到93.2%。本文通过对基于Micro LED的倾斜投影车灯光学系统进行优化设计及采用图像校正方法,实现了高光效、低畸变的车灯投影。 展开更多
关键词 车灯投影光学系统 光学设计 micro LED 照度均匀性 梯形畸变
下载PDF
光子晶体Micro LED微显示阵列加工及光学特性分析 被引量:1
11
作者 孟媛 肖秧 +4 位作者 冯晓雨 何龙振 张鹏喆 宁平凡 刘宏伟 《半导体技术》 CAS 北大核心 2024年第8期719-725,共7页
Micro LED器件具有高亮度、低功耗和高可靠性等优点,但Micro LED显示像素巨量转移和光提取效率低的问题为其应用带来挑战。开发了具有高转移效率和出光效率的单片64×64 Micro LED微显示阵列,提出了倒装型GaN基单片Micro LED微显示... Micro LED器件具有高亮度、低功耗和高可靠性等优点,但Micro LED显示像素巨量转移和光提取效率低的问题为其应用带来挑战。开发了具有高转移效率和出光效率的单片64×64 Micro LED微显示阵列,提出了倒装型GaN基单片Micro LED微显示阵列芯片和Si基驱动电路的设计方法及集成工艺。通过时域有限差分(FDTD)方法对Micro LED微显示阵列光学特性进行了建模分析,设计了一种提高Micro LED微显示阵列出光效率的光提取结构。结合仿真结果,开发了一种在Micro LED蓝宝石衬底表面制备光子晶体结构的聚焦离子束(FIB)微纳加工工艺,并进行了器件加工。测试结果表明,蓝宝石衬底上加工的光子晶体结构可以提高Micro LED器件的表面出光效率,光功率平均值提升了16.36%,对Micro LED微显示阵列加工及微显示像素光提取问题具有借鉴意义。 展开更多
关键词 micro LED 微显示阵列 光子晶体结构 聚焦离子束(FIB) 出光效率
下载PDF
Vertical 3D Nanostructures Boost Efficient Hydrogen Production Coupled with Glycerol Oxidation Under Alkaline Conditions 被引量:5
12
作者 Shanlin Li Danmin Liu +4 位作者 Guowei Wang Peijie Ma Xunlu Wang Jiacheng Wang Ruguang Ma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期609-621,共13页
Hydrogen production from electrolytic water is an important sustainable technology to realize renewable energy conversion and carbon neutrality.However,it is limited by the high overpotential of oxygen evolution react... Hydrogen production from electrolytic water is an important sustainable technology to realize renewable energy conversion and carbon neutrality.However,it is limited by the high overpotential of oxygen evolution reaction(OER)at the anode.To reduce the operating voltage of electrolyzer,herein thermodynamically favorable glycerol oxidation reaction(GOR)is proposed to replace the OER.Moreover,vertical Ni O flakes and NiMoNH nanopillars are developed to boost the reaction kinetics of anodic GOR and cathodic hydrogen evolution,respectively.Meanwhile,excluding the explosion risk of mixed H_2/O_(2),a cheap organic membrane is used to replace the expensive anion exchange membrane in the electrolyzer.Impressively,the electrolyzer delivers a remarkable reduction of operation voltage by 280 mV,and exhibits good long-term stability.This work provides a new paradigm of hydrogen production with low cost and good feasibility. 展开更多
关键词 Hydrogen evolution reaction Glycerol oxidation reaction Oxygen evolution reaction Flow cell nanostructure
下载PDF
Morphology,Nanostructure,and Oxidation Reactivity of Particulate Matter Emitted by Diesel Blending with Various Aromatics 被引量:1
13
作者 Yang He Li Bo +3 位作者 Liu Shuntao Wang Yajun Zhang Ran Guo Lingyan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第1期1-9,共9页
This study aims to analyze the influence of the polycyclic aromatic hydrocarbon(PAH)content in diesel on the physical and chemical properties of diesel soot particles.Four diesel fuels with different PAH content were ... This study aims to analyze the influence of the polycyclic aromatic hydrocarbon(PAH)content in diesel on the physical and chemical properties of diesel soot particles.Four diesel fuels with different PAH content were tested on a 11.6 L direct-injection diesel engine.The raw particulate matter(PM)before the after-treatment devices was collected using the thermophoresis sampling system and the filter sampling system.A transmission electron microscope and Raman spectrometer are used to analyze the physical properties of the soot particles,including morphology,primary particle size distribution,and graphitization degree.A Fourier transform infrared spectrometer and thermogravimetric analyzer are used to characterize the surface chemical composition and oxidation reactivity of soot particles,respectively.The results show that as the PAH content in the fuel decreases,the size of the primary soot particles decreases from 29.58 to 26.70 nm.The graphitization degree of soot particles first increases and then decreases,and the relative content of the aliphatic hydrocarbon functional groups of soot particles first decreases and then increases.The T_(10),T_(50),and T_(90) of soot from high-PAH fuel are 505.3,589.3,and 623.5℃,while those from low-PAH fuel are 480.1,557.5,and 599.2℃,respectively.This indicates that exhaust PM generated by the low-PAH fuel has poor oxidation reactivity.However,as the PAH content in fuel is further decreased,the excessively high cetane number may cause uneven mixing and incomplete combustion,leading to enhanced oxidation reactivity. 展开更多
关键词 particulate matter AROMATICS MORPHOLOGY nanostructure oxidation reactivity
下载PDF
Artificial Macrophage with Hierarchical Nanostructure for Biomimetic Reconstruction of Antitumor Immunity 被引量:1
14
作者 Henan Zhao Renyu Liu +3 位作者 Liqiang Wang Feiying Tang Wansong Chen You‑Nian Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第12期1-20,共20页
Artificial cells are constructed from synthetic materials to imitate the biological functions of natural cells.By virtue of nanoengineering techniques,artificial cells with designed biomimetic functions provide altern... Artificial cells are constructed from synthetic materials to imitate the biological functions of natural cells.By virtue of nanoengineering techniques,artificial cells with designed biomimetic functions provide alternatives to natural cells,showing vast potential for biomedical applications.Especially in cancer treatment,the deficiency of immunoactive macrophages results in tumor progression and immune resistance.To overcome the limitation,a BaSO_(4)@ZIF-8/transferrin(TRF)nanomacrophage(NMΦ)is herein constructed as an alternative to immunoactive macrophages.Alike to natural immunoactive macrophages,NMΦis stably retained in tumors through the specific affinity of TRF to tumor cells.Zn^(2+)as an“artificial cytokine”is then released from the ZIF-8 layer of NMΦunder tumor microenvironment.Similar as proinflammatory cytokines,Zn^(2+)can trigger cell anoikis to expose tumor antigens,which are selectively captured by the BaSO_(4)cavities.Therefore,the hierarchical nanostructure of NMΦs allows them to mediate immunogenic death of tumor cells and subsequent antigen capture for T cell activation to fabricate long-term antitumor immunity.As a proof-of-concept,the NMΦmimics the biological functions of macrophage,including tumor residence,cytokine release,antigen capture and immune activation,which is hopeful to provide a paradigm for the design and biomedical applications of artificial cells. 展开更多
关键词 Artificial macrophage Chemical messenger Hierarchical nanostructure ANOIKIS Antitumor immunotherap
下载PDF
Tailored BiVO_(4)/In_(2)O_(3)nanostructures with boosted charge separation ability toward unassisted water splitting 被引量:1
15
作者 Mi Gyoung Lee Jin Wook Yang +10 位作者 Ik Jae Park Tae Hyung Lee Hoonkee Park Woo Seok Cheon Sol ALee Hyungsoo Lee Su Geun Ji Jun Min Suh Jooho Moon Jin Young Kim Ho Won Jang 《Carbon Energy》 SCIE CSCD 2023年第6期45-59,共15页
The development of new heterostructures with high photoactivity is a breakthrough for the limitation of solar-driven water splitting.Here,we first introduce indium oxide(In_(2)O_(3))nanorods(NRs)as a novel electron tr... The development of new heterostructures with high photoactivity is a breakthrough for the limitation of solar-driven water splitting.Here,we first introduce indium oxide(In_(2)O_(3))nanorods(NRs)as a novel electron transport layer for bismuth vanadate(BiVO_(4))with a short charge diffusion length.In_(2)O_(3)NRs reinforce the electron transport and hole blocking of BiVO_(4),surpassing the state-of-the-art photoelectrochemical performances of BiVO_(4)-based photoanodes.Also,a tannin-nickel-iron complex(TANF)is used as an oxygen evolution catalyst to speed up the reaction kinetics.The final TANF/BiVO_(4)/In_(2)O_(3)NR photoanode generates photocurrent densities of 7.1 mAcm^(−2) in sulfite oxidation and 4.2 mA cm^(−2) in water oxidation at 1.23 V versus the reversible hydrogen electrode.Furthermore,the“artificial leaf,”which is a tandem cell with a perovskite/silicon solar cell,shows a solar-to-hydrogen conversion efficiency of 6.2%for unbiased solar water splitting.We reveal significant advances in the photoactivity of TANF/BiVO_(4)/In_(2)O_(3)NRs from the tailored nanostructure and band structure for charge dynamics. 展开更多
关键词 bismuth vanadate HETEROJUNCTION indium oxide nanostructure photoelectrochemical water splitting
下载PDF
Toward high-efficiency perovskite solar cells with one-dimensional oriented nanostructured electron transport materials 被引量:1
16
作者 Yinhua Lv Bing Cai +3 位作者 Ruihan Yuan Yihui Wu Quinn Qiao Wen-Hua Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期66-87,I0003,共23页
The unique advantages of one-dimensional(1D)oriented nanostructures in light-trapping and chargetransport make them competitive candidates in photovoltaic(PV)devices.Since the emergence of perovskite solar cells(PSCs)... The unique advantages of one-dimensional(1D)oriented nanostructures in light-trapping and chargetransport make them competitive candidates in photovoltaic(PV)devices.Since the emergence of perovskite solar cells(PSCs),1D nanostructured electron transport materials(ETMs)have drawn tremendous interest.However,the power conversion efficiencies(PCEs)of these devices have always significantly lagged behind their mesoscopic and planar counterparts.High-efficiency PSCs with 1D ETMs showing efficiency over 22%were just realized in the most recent studies.It yet lacks a comprehensive review covering the development of 1D ETMs and their application in PSCs.We hence timely summarize the advances in 1D ETMs-based solar cells,emphasizing on the fundamental and optimization issues of charge separation and collection ability,and their influence on PV performance.After sketching the classification and requirements for high-efficiency 1D nanostructured solar cells,we highlight the applicability of 1D TiO_(2)nanostructures in PSCs,including nanotubes,nanorods,nanocones,and nanopyramids,and carefully analyze how the electrostatic field affects cell performance.Other kinds of oriented nanostructures,e.g.,ZnO and SnO_(2)ETMs,are also described.Finally,we discuss the challenges and propose some potential strategies to further boost device performance.This review provides a broad range of valuable work in this fast-developing field,which we hope will stimulate research enthusiasm to push PSCs to an unprecedented level. 展开更多
关键词 1D nanostructures Perovskite solar cells Electron transport materials Electrostatic field High-efficiency
下载PDF
Strongly coupled N-doped carbon/Fe3O4/N-doped carbon hierarchical micro/nanostructures for enhanced lithium storage performance 被引量:3
17
作者 Tian tian Ma Xianghong Liu +3 位作者 Li Sun Yongshan Xu Lingli Zheng Jun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期43-51,共9页
A strong interface coupling is of vital importance to develop metal oxide/carbon nanocomposite anodes for next-generation lithium ion batteries.Herein,a rational N-doped carb on riveting strategy is designed to boost ... A strong interface coupling is of vital importance to develop metal oxide/carbon nanocomposite anodes for next-generation lithium ion batteries.Herein,a rational N-doped carb on riveting strategy is designed to boost the lithium storage performance of Fe3O4/N-doped carbon tubular structures.Poly pyrrole(PPy)has been used as the precursor for N-doped carbon.N-doped carbon-riveted Fe3O4/N-doped carbon(N-C@Fe3O4@N-C)nanocomposites were obtained by pyrolysis of PPy-coated FeOOH@PPy nanotubes in Ar atmosphere.When tested as an anode for LIBs,the N-C@Fe3O4@N-C displays a high reversible discharge capacity of 675.8 mA h g-1 after 100 cycles at a current density of 100 mA g-1 and very good rate capability(470 mA h g_1 at 2 A g-1),which significantly surpasses the performance of Fe3O4@N-C.TEM analysis reveals that after battery cycling the FeOx particles detached from the carbon fibers for Fe3O4@N-C,while for N-C@Fe3O4@N-C the FeOx particles were still trapped in the carbon matrix,thus preserving good electrical contact.Consequently,the superior performance of N-C@Fe3C)4@N-C is attributed to the synergistic effect between Fe3O4 and N-doped carbon combined with the unique structure properties of the nanocomposites.The strategy reported in this work is expected to be applicable for designing other electrode materials for LIBs. 展开更多
关键词 Iron OXIDE micro/nanostructures CARBON TUBES ANODE Coupling
下载PDF
Microstructure and properties of Al_2O_3-13%TiO_2 coatings sprayed using nanostructured powders 被引量:19
18
作者 ZHANG Jianxin HE Jining DONG Yanchun LI Xiangzhi YAN Dianran 《Rare Metals》 SCIE EI CAS CSCD 2007年第4期391-397,共7页
The microstructure and wear performance of M203-13% TiO2 coatings prepared by plasma spraying of agglom- erated nanoparticle powders were investigated. SEM analysis showed that the as-sprayed Al2O3-TiO2 coatings compr... The microstructure and wear performance of M203-13% TiO2 coatings prepared by plasma spraying of agglom- erated nanoparticle powders were investigated. SEM analysis showed that the as-sprayed Al2O3-TiO2 coatings comprise of two kinds of typical region: fully melted region and unmelted/partially melted nanostructured region, which is different than the conventional coating with lamellar structure. It is shown that the microhardness of the nanostructured coatings was about 15%-30% higher than that of the conventional coating and the wear resistance is significantly improved, especially under a high wear load. The nanostructured coating sprayed at a lower power shows a lower wear resistance than the coatings produced at a higher power, because of the presence of pores and microstructural defects which are detrimental to the fracture toughness of the coatings. 展开更多
关键词 surface coating nanostructured coating plasma spray microHARDNESS wear resistance
下载PDF
Laser Synthesis and Microfabrication of Micro/ Nanostructured Materials Toward Energy Conversion and Storage 被引量:12
19
作者 Lili Zhao Zhen Liu +6 位作者 Duo Chen Fan Liu Zhiyuan Yang Xiao Li Haohai Yu Hong Liu Weijia Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第3期107-154,共48页
Nanomaterials are known to exhibit a number of interesting physical and chemical properties for various applications,including energy conversion and storage,nanoscale electronics,sensors and actuators,photonics device... Nanomaterials are known to exhibit a number of interesting physical and chemical properties for various applications,including energy conversion and storage,nanoscale electronics,sensors and actuators,photonics devices and even for biomedical purposes.In the past decade,laser as a synthetic technique and laser as a microfabrication technique facilitated nanomaterial preparation and nanostructure construction,including the laser processing-induced carbon and non-carbon nanomaterials,hierarchical structure construction,patterning,heteroatom doping,sputtering etching,and so on.The laser-induced nanomaterials and nanostructures have extended broad applications in electronic devices,such as light–thermal conversion,batteries,supercapacitors,sensor devices,actuators and electrocatalytic electrodes.Here,the recent developments in the laser synthesis of carbon-based and non-carbon-based nanomaterials are comprehensively summarized.An extensive overview on laser-enabled electronic devices for various applications is depicted.With the rapid progress made in the research on nanomaterial preparation through laser synthesis and laser microfabrication technologies,laser synthesis and microfabrication toward energy conversion and storage will undergo fast development. 展开更多
关键词 Laser synthesis Laser microfabrication micro/nanostructured materials Energy conversion and storage
下载PDF
A review of the techniques for the mold manufacturing of micro/nanostructures for precision glass molding 被引量:7
20
作者 Tianfeng Zhou Yupeng He +7 位作者 Tianxing Wang Zhanchen Zhu Ruzhen Xu Qian Yu Bin Zhao Wenxiang Zhao Peng Liu Xibin Wang 《International Journal of Extreme Manufacturing》 SCIE EI 2021年第4期23-54,共32页
Micro/nanostructured components play an important role in micro-optics and optical engineering,tribology and surface engineering,and biological and biomedical engineering,among other fields.Precision glass molding tec... Micro/nanostructured components play an important role in micro-optics and optical engineering,tribology and surface engineering,and biological and biomedical engineering,among other fields.Precision glass molding technology is the most efficient method of manufacturing micro/nanostructured glass components,the premise of which is meld manufacturing with complementary micro/nanostructures.Numerous mold manufacturing methods have been developed to fabricate extremely small and high-quality micro/nanostructures to satisfy the demands of functional micro/nanostructured glass components for various applications.Moreover,the service performance of the mold should also be carefully considered.This paper reviews a variety of technologies for manufacturing micro/nanostructured molds.The authors begin with an introduction of the extreme requirements of mold materials.The following section provides a detailed survey of the existing micro/nanostructured mold manufacturing techniques and their corresponding mold materials,including nonmechanical and mechanical methods.This paper concludes with a detailed discussion of the authors recent research on nickel-phosphorus(Ni-P)mold manufacturing and its service performance. 展开更多
关键词 precision glass molding mold manufacturing micro/nanostructure mold material extreme features
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部