Traumatic injuries to the central nervous system(CNS) result in disruption of the intricate network of axons which connect functionally related neurons that are widely distributed throughout the brain and spinal cord....Traumatic injuries to the central nervous system(CNS) result in disruption of the intricate network of axons which connect functionally related neurons that are widely distributed throughout the brain and spinal cord.Under normal conditions,maintenance of this complex system is structurally and functionally supported by astrocytes (ACs)and other glial cells,the processes of which form a framework surrounding neuronal cell bodies,dendrites,axons,and synapses.展开更多
The topography of gear meshing interfaces is one of the key factors affecting the dynamic characteristics of the gear transmission system.In order to obtain the contact characteristics of meshing gear pair with differ...The topography of gear meshing interfaces is one of the key factors affecting the dynamic characteristics of the gear transmission system.In order to obtain the contact characteristics of meshing gear pair with different surface micro-topographies,an interface feature model and a tribo-dynamics coupling model for the gear system are proposed in this paper.The effects of the gear tooth surface micro-topography on the oil film distribution,contact damping and friction are considered.The time-varying meshing stiffness and the static transmission error are included in the abovementioned models.An exemplary gear pair is analyzed using the proposed models to investigate the influence of the surface micro-topography on the dynamic characteristics of gear system under different micro-topographies and input torque conditions.Simulation results show that the effects of gear tooth micro-topography on the gear dynamic responses(including the friction and the vicious damping at the gear meshing interface and the vibration in the direction of offline of action)are highly dependent on the regularity of tooth surface.The vibration and noise can be significantly controlled by manufacturing a regular gear tooth profiles instead of random profiles.展开更多
In this paper, (-amylase organized monolayer was assembled on the surface of the PET-CO2- substrate in different conditions. The different topography of the (-amylase/PET monolayer was obtained by AFM in tapping mode.
Soil water is an important factor restricting afforestation on the semi-arid Loess Plateau.The microtopography of the loess slope has changed the distribution pattern of soil water on the slope.To improve water utiliz...Soil water is an important factor restricting afforestation on the semi-arid Loess Plateau.The microtopography of the loess slope has changed the distribution pattern of soil water on the slope.To improve water utilization efficiency and optimize afforestation configuration patterns,the relationship between soil water and precipitation at micro-topographic scale must be studied.We used time series analysis to study the temporal variation of soil water and its response to precipitation in four kinds of micro-topographies and undisturbed slope on loess slopes.Micro-topographies significantly influenced soil water distribution and dynamics on the slopes.Soil water stored in the platform,sinkhole,and ephemeral gully influenced subsequent soil water for 4 weeks,whereas soil water stored in the scarp and undisturbed slope could influence soil water for 2 weeks.It took 12 weeks,10 weeks,18 weeks,6 weeks,and 12 weeks for precipitation to reach the deeper soil layer in the platform,sinkhole,scarp,ephemeral gully,and undisturbed slope,respectively.These soil water characteristics in different micro-topographies are vital factors that should be taken into consideration when undertaking afforestation on the Loess Plateau.展开更多
Background:Nitrogen(N)saturation theory proposes that an ecosystem might switch from N limitation to carbon(C),phosphorus(P),or other nutrient limitations if it receives continuous N input.Yet,after N limitation is re...Background:Nitrogen(N)saturation theory proposes that an ecosystem might switch from N limitation to carbon(C),phosphorus(P),or other nutrient limitations if it receives continuous N input.Yet,after N limitation is removed,which nutrient is the most limited and whether topography modulates such change is rarely tested at a microbial level.Here,we conducted a two-year N addition experiment under two different topography positions(i.e.a slope and a valley)in a N-saturated subtropical forest.Soil enzyme activity was measured,and ecoenzymatic stoichiometry indexes were calculated as indicators of microbial resource limitation.Results:In the valley,two-year N addition changed the activity of all studied enzymes to various degrees.As a result,microbial C limitation was aggravated in the valley,and consequently microbial decomposition of soil labile organic C increased,but microbial P limitation was alleviated due to the stoichiometry balance.On the slope,however,N addition did not significantly change the activity of the studied enzymes,and did not alter the status of microbial resource limitation.Conclusions:These results indicate that C is a more limited element for microbial growth than P after removing N limitation,but we also highlight that topography can regulate the effect of N deposition on soil microbial resource limitation in subtropical forests.These findings provide useful supplements to the N saturation theory.展开更多
New information and communication technologies have led to the emergence of new techniques in our daily lives. Indeed, in topography, a lightning development of new techniques and new devices has been noticed. This de...New information and communication technologies have led to the emergence of new techniques in our daily lives. Indeed, in topography, a lightning development of new techniques and new devices has been noticed. This development has given rise to a multitude of choices of devices and various classes of precision. This implies that the decision-makers have to study the adequate equipment and the appropriate technique according to the topographic task to be realized. The objective is not to compare GNSS and topographic techniques, but to point out the contribution of the Global Navigation Satelite System (GNSS) techniques of topographic work. Thus, a theoretical study with a critical eye on the scientific principle of calculating the third topographic dimension followed by a leveling campaign, Real Time Kinematic (RTK) surveys will be used in order to be able to compare and interpret the result from these campaigns. The study of the difference resulting from the practical campaigns will allow us to identify the contribution of GNSS technology.展开更多
The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the...The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE.展开更多
Simplification and encryption are performed on the point cloud data concerning high-relief( 20 cm tillage) and low-relief( raking bare slope) terrain on a different scale of observation. We select three indicators( su...Simplification and encryption are performed on the point cloud data concerning high-relief( 20 cm tillage) and low-relief( raking bare slope) terrain on a different scale of observation. We select three indicators( surface curvature,slope aspect and surface roughness) to evaluate the effect of simplification and encryption on micro-topography data analysis. The results show that simplification and encryption have a significant impact on the curvature of high-relief terrain,but have no significant impact on low-relief terrain. The slope aspect change is not significant after 5,10 mm data simplification and encryption; 1 mm simplification has a regular impact on surface roughness; 5 mm encryption and simplification have a complex impact on high-relief terrain; 10 mm encryption has a complex impact on high-relief terrain roughness change but a regular impact on bare slope change.展开更多
DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation ...DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation studies to both clinical medicine and scientific research.Microflu-idic chips are excellent carriers for molecular analysis,and their use can provide improvements from multiple aspects.On-chip molecular analysis has received extensive attention owing to its advantages of portability,high throughput,low cost,and high efficiency.In recent years,the use of novel microfluidic chips for DNA methylation analysis has been widely reported and has shown obvious superiority to conventional methods.In this review,wefirst focus on DNA methylation and its applications.Then,we discuss advanced microfluidic-based methods for DNA methylation analysis and describe the great progress that has been made in recent years.Finally,we summarize the advantages that microfluidic technology brings to DNA methylation analysis and describe several challenges and perspectives for on-chip DNA methylation analysis.This review should help researchers improve their understanding and make progress in developing microfluidic-based methods for DNA methylation analysis.展开更多
We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation O...We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.展开更多
This study describes the floristic composition and structure of a woody stand in the Senegalese Sahel, paying particular attention to the edaphic factors of its floristic composition. A stratified inventory considerin...This study describes the floristic composition and structure of a woody stand in the Senegalese Sahel, paying particular attention to the edaphic factors of its floristic composition. A stratified inventory considering the different relief units was adopted. Woody vegetation was surveyed using a dendrometric approach. The results obtained show that the flora is dominated by a few species adapted to drought, such as Balanites aegyptiaca (L.) Del., Calotropis procera Ait. and Boscia senegalensis (Pers.). The distribution of this flora and the structure of the ligneous plants are linked to the topography. In the lowlands, the flora is more diversified and the ligneous plants reach their optimum level of development compared with the higher relief areas. In the lowlands, there are a few woody species which, in the past, were indicative of better climatic conditions. These are Anogeissus leiocarpus (DC.), Commiphora africana (A. Rich.), Feretia apodanthera Del., Loeseneriella africana (A. Smith), Mitragyna inermis (Willd.) and Sclerocarya birrea (A. Rich). It is important that their reintroduction into reforestation projects takes account of their edaphic preference.展开更多
Utilizing the adopted average topographic density of 2670 kg/m^(3)in the reduction of gravity anomalies introduces errors attributed to topographic density variations,which consequently affect geoid modeling accuracy....Utilizing the adopted average topographic density of 2670 kg/m^(3)in the reduction of gravity anomalies introduces errors attributed to topographic density variations,which consequently affect geoid modeling accuracy.Furthermore,the mean gravity along the plumbline within the topography in the definition of Helmert orthometric heights is computed approximately by applying the Poincar e-Prey gravity reduction where the topographic density variations are disregarded.The Helmert orthometric heights of benchmarks are then affected by errors.These errors could be random or systematic depending on the specific geological setting of the region where the leveling network is physically established and/or the geoid model is determined.An example of systematic errors in orthometric heights can be given for large regions characterized by sediment or volcanic deposits,the density of which is substantially lower than the adopted topographic density used in Helmert's definition of heights.The same applies to geoid modeling errors.In this study,we investigate these errors in the Hong Kong territory,where topographic density is about 20%lower than the density of 2670 kg/m^(3).We use the digital rock density model to estimate the effect of topographic density variations on the geoid and orthometric heights.Our results show that this effect on the geoid and Helmert orthometric heights reach maxima of about 2.1 and 0.5 cm,respectively.Both results provide clear evidence that rock density models are essential in physical geodesy applications involving gravimetric geoid modeling and orthometric height determination despite some criticism that could be raised regarding the reliability of these density models.However,in regions dominated by sedimentary and igneous rocks,the geological information is essential in these applications because topographic densities are substantially lower than the average density of 2670 kg/m^(3),thus introducing large systematic errors in geoid and orthometric heights.展开更多
文摘Traumatic injuries to the central nervous system(CNS) result in disruption of the intricate network of axons which connect functionally related neurons that are widely distributed throughout the brain and spinal cord.Under normal conditions,maintenance of this complex system is structurally and functionally supported by astrocytes (ACs)and other glial cells,the processes of which form a framework surrounding neuronal cell bodies,dendrites,axons,and synapses.
基金Projects(51905053,51805051)supported by the National Natural Science Foundation of ChinaProject(cstc2019jcyj-bshX0119)supported by the Chongqing Postdoctoral Science Foundation,China。
文摘The topography of gear meshing interfaces is one of the key factors affecting the dynamic characteristics of the gear transmission system.In order to obtain the contact characteristics of meshing gear pair with different surface micro-topographies,an interface feature model and a tribo-dynamics coupling model for the gear system are proposed in this paper.The effects of the gear tooth surface micro-topography on the oil film distribution,contact damping and friction are considered.The time-varying meshing stiffness and the static transmission error are included in the abovementioned models.An exemplary gear pair is analyzed using the proposed models to investigate the influence of the surface micro-topography on the dynamic characteristics of gear system under different micro-topographies and input torque conditions.Simulation results show that the effects of gear tooth micro-topography on the gear dynamic responses(including the friction and the vicious damping at the gear meshing interface and the vibration in the direction of offline of action)are highly dependent on the regularity of tooth surface.The vibration and noise can be significantly controlled by manufacturing a regular gear tooth profiles instead of random profiles.
文摘In this paper, (-amylase organized monolayer was assembled on the surface of the PET-CO2- substrate in different conditions. The different topography of the (-amylase/PET monolayer was obtained by AFM in tapping mode.
基金financially supported by Forestry Industry Research Special Funds for Public Welfare Projects(201104002-2)China National Scientific and Technical Innovation Research Project for 12th Five Year Plan(2015BAD07B0201)
文摘Soil water is an important factor restricting afforestation on the semi-arid Loess Plateau.The microtopography of the loess slope has changed the distribution pattern of soil water on the slope.To improve water utilization efficiency and optimize afforestation configuration patterns,the relationship between soil water and precipitation at micro-topographic scale must be studied.We used time series analysis to study the temporal variation of soil water and its response to precipitation in four kinds of micro-topographies and undisturbed slope on loess slopes.Micro-topographies significantly influenced soil water distribution and dynamics on the slopes.Soil water stored in the platform,sinkhole,and ephemeral gully influenced subsequent soil water for 4 weeks,whereas soil water stored in the scarp and undisturbed slope could influence soil water for 2 weeks.It took 12 weeks,10 weeks,18 weeks,6 weeks,and 12 weeks for precipitation to reach the deeper soil layer in the platform,sinkhole,scarp,ephemeral gully,and undisturbed slope,respectively.These soil water characteristics in different micro-topographies are vital factors that should be taken into consideration when undertaking afforestation on the Loess Plateau.
基金funded by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA13010302)the National Natural Science Foundation of China(Nos.31872691,41877094,and 31760153)+1 种基金Guangxi Bagui Scholarship Program to Dejun LiNational High-Level Talents Special Support Program to Dejun Li.
文摘Background:Nitrogen(N)saturation theory proposes that an ecosystem might switch from N limitation to carbon(C),phosphorus(P),or other nutrient limitations if it receives continuous N input.Yet,after N limitation is removed,which nutrient is the most limited and whether topography modulates such change is rarely tested at a microbial level.Here,we conducted a two-year N addition experiment under two different topography positions(i.e.a slope and a valley)in a N-saturated subtropical forest.Soil enzyme activity was measured,and ecoenzymatic stoichiometry indexes were calculated as indicators of microbial resource limitation.Results:In the valley,two-year N addition changed the activity of all studied enzymes to various degrees.As a result,microbial C limitation was aggravated in the valley,and consequently microbial decomposition of soil labile organic C increased,but microbial P limitation was alleviated due to the stoichiometry balance.On the slope,however,N addition did not significantly change the activity of the studied enzymes,and did not alter the status of microbial resource limitation.Conclusions:These results indicate that C is a more limited element for microbial growth than P after removing N limitation,but we also highlight that topography can regulate the effect of N deposition on soil microbial resource limitation in subtropical forests.These findings provide useful supplements to the N saturation theory.
文摘New information and communication technologies have led to the emergence of new techniques in our daily lives. Indeed, in topography, a lightning development of new techniques and new devices has been noticed. This development has given rise to a multitude of choices of devices and various classes of precision. This implies that the decision-makers have to study the adequate equipment and the appropriate technique according to the topographic task to be realized. The objective is not to compare GNSS and topographic techniques, but to point out the contribution of the Global Navigation Satelite System (GNSS) techniques of topographic work. Thus, a theoretical study with a critical eye on the scientific principle of calculating the third topographic dimension followed by a leveling campaign, Real Time Kinematic (RTK) surveys will be used in order to be able to compare and interpret the result from these campaigns. The study of the difference resulting from the practical campaigns will allow us to identify the contribution of GNSS technology.
基金provided by Science and Technology Development Project of Jilin Province(No.20230101338JC)。
文摘The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE.
文摘Simplification and encryption are performed on the point cloud data concerning high-relief( 20 cm tillage) and low-relief( raking bare slope) terrain on a different scale of observation. We select three indicators( surface curvature,slope aspect and surface roughness) to evaluate the effect of simplification and encryption on micro-topography data analysis. The results show that simplification and encryption have a significant impact on the curvature of high-relief terrain,but have no significant impact on low-relief terrain. The slope aspect change is not significant after 5,10 mm data simplification and encryption; 1 mm simplification has a regular impact on surface roughness; 5 mm encryption and simplification have a complex impact on high-relief terrain; 10 mm encryption has a complex impact on high-relief terrain roughness change but a regular impact on bare slope change.
基金support from the National Key R&D Program of China(Grant No.2018YFE0118700)the National Natural Science Foundation of China(NSFC Grant No.62174119)+1 种基金the 111 Project(Grant No.B07014)the Foundation for Talent Scientists of Nanchang Institute for Microtechnology of Tianjin University.
文摘DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation studies to both clinical medicine and scientific research.Microflu-idic chips are excellent carriers for molecular analysis,and their use can provide improvements from multiple aspects.On-chip molecular analysis has received extensive attention owing to its advantages of portability,high throughput,low cost,and high efficiency.In recent years,the use of novel microfluidic chips for DNA methylation analysis has been widely reported and has shown obvious superiority to conventional methods.In this review,wefirst focus on DNA methylation and its applications.Then,we discuss advanced microfluidic-based methods for DNA methylation analysis and describe the great progress that has been made in recent years.Finally,we summarize the advantages that microfluidic technology brings to DNA methylation analysis and describe several challenges and perspectives for on-chip DNA methylation analysis.This review should help researchers improve their understanding and make progress in developing microfluidic-based methods for DNA methylation analysis.
基金the National Natural Science Foundation of China(Grant Nos.41831073,42174196,and 42374205)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences(CAS+4 种基金Grant No.YSBR-018)the Informatization Plan of CAS(Grant No.CAS-WX2021PY-0101)the Youth Cross Team Scientific Research project of the Chinese Academy of Sciences(Grant No.JCTD-2021-10)the Open Research Project of Large Research Infrastructures of CAS titled“Study on the Interaction Between Low-/Mid-Latitude Atmosphere and Ionosphere Based on the Chinese Meridian Project.”This work was also supported in part by the Specialized Research Fund and the Open Research Program of the State Key Laboratory of Space Weather.
文摘We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.
文摘This study describes the floristic composition and structure of a woody stand in the Senegalese Sahel, paying particular attention to the edaphic factors of its floristic composition. A stratified inventory considering the different relief units was adopted. Woody vegetation was surveyed using a dendrometric approach. The results obtained show that the flora is dominated by a few species adapted to drought, such as Balanites aegyptiaca (L.) Del., Calotropis procera Ait. and Boscia senegalensis (Pers.). The distribution of this flora and the structure of the ligneous plants are linked to the topography. In the lowlands, the flora is more diversified and the ligneous plants reach their optimum level of development compared with the higher relief areas. In the lowlands, there are a few woody species which, in the past, were indicative of better climatic conditions. These are Anogeissus leiocarpus (DC.), Commiphora africana (A. Rich.), Feretia apodanthera Del., Loeseneriella africana (A. Smith), Mitragyna inermis (Willd.) and Sclerocarya birrea (A. Rich). It is important that their reintroduction into reforestation projects takes account of their edaphic preference.
基金supported by the Hong Kong GRF RGC project 15217222:“Modernization of the leveling network in the Hong Kong territories”。
文摘Utilizing the adopted average topographic density of 2670 kg/m^(3)in the reduction of gravity anomalies introduces errors attributed to topographic density variations,which consequently affect geoid modeling accuracy.Furthermore,the mean gravity along the plumbline within the topography in the definition of Helmert orthometric heights is computed approximately by applying the Poincar e-Prey gravity reduction where the topographic density variations are disregarded.The Helmert orthometric heights of benchmarks are then affected by errors.These errors could be random or systematic depending on the specific geological setting of the region where the leveling network is physically established and/or the geoid model is determined.An example of systematic errors in orthometric heights can be given for large regions characterized by sediment or volcanic deposits,the density of which is substantially lower than the adopted topographic density used in Helmert's definition of heights.The same applies to geoid modeling errors.In this study,we investigate these errors in the Hong Kong territory,where topographic density is about 20%lower than the density of 2670 kg/m^(3).We use the digital rock density model to estimate the effect of topographic density variations on the geoid and orthometric heights.Our results show that this effect on the geoid and Helmert orthometric heights reach maxima of about 2.1 and 0.5 cm,respectively.Both results provide clear evidence that rock density models are essential in physical geodesy applications involving gravimetric geoid modeling and orthometric height determination despite some criticism that could be raised regarding the reliability of these density models.However,in regions dominated by sedimentary and igneous rocks,the geological information is essential in these applications because topographic densities are substantially lower than the average density of 2670 kg/m^(3),thus introducing large systematic errors in geoid and orthometric heights.