The sensitivity and selectivity of gas sensors are related with not only sensing material,but also their operating temperatures.Applying this property,temperature modulation technique has been proposed to improve the ...The sensitivity and selectivity of gas sensors are related with not only sensing material,but also their operating temperatures.Applying this property,temperature modulation technique has been proposed to improve the selectivity of gas sensors.With a newly developed alumina based micro gas sensor,the sensitivity to CO and CH_4 at different operating temperatures was investigated.By modulating the temperature of the sensor at pulse and sine wave modes with different frequencies and amplitudes,the dynamic responses of the sensor were measured and processed.Results show that the modulating waveshape plays an important role in the improvement of selectivity,while the influence of frequency is small at the suitable sampling frequency in the range of 25 mHz~200 mHz.展开更多
The oxide contents of TiO2, MnO, SrO and Fe2O3 in the body and graze layers of the Jiao-Tan-Xia (JTX) and Lao-Hu-Dong (LHD) porcelains in Southern Song Dynasty (1127-1279 A.D.) have been determined using an In- ternat...The oxide contents of TiO2, MnO, SrO and Fe2O3 in the body and graze layers of the Jiao-Tan-Xia (JTX) and Lao-Hu-Dong (LHD) porcelains in Southern Song Dynasty (1127-1279 A.D.) have been determined using an In- ternational Eagle-II μ-probe EDXRF spectrometer. The results show that the contents in the body are much different from those in the graze one. Therefore, the transient thickness (TT) between the body and graze layers can be meas- ured through determination of a distance of the drift change in the chemical contents. The TT average for the JTX porcelains is 161μm, while that for the LHD porcelains is 258μm, which are consistent with a range of 0.15-0.3mm in the Ru-Yao porcelains. The different TT is related to the variances in firing temperature and raw material for manu- facturing the respective porcelains.展开更多
This paper analyses the effect of water storage and soil moisture conservation by means of micro water collecting technique in the dryland field of spring maize. The results indicate that the rainfall infiltration d...This paper analyses the effect of water storage and soil moisture conservation by means of micro water collecting technique in the dryland field of spring maize. The results indicate that the rainfall infiltration depth is deeper by means of micro water collecting treatment than that of the control. In micro water collecting treatment, the amount of soil water storage within 0~200 cm of soil layers increases by 50.5 mm, 13.5~58.6 mm, and 24.5 mm respectively during seedling stage, the critical stage of water requirement and the ripening and harvesting stage compared with the control. The micro water collecting technique not only has the function of regulating and adjusting the amount and distribution of field evapotranspiration, but also can raise the water use efficiency, which results in an obvious effect of increasing crop yield, especially in the dry years.展开更多
Objective To test Calcium ion(Ca2+) flow at the head and end of outer hair cells(OHCs) in resting state and in response to Nimodipine treatment.Methods Non-invasive micro-test techniques were used to study Ca2+ in iso...Objective To test Calcium ion(Ca2+) flow at the head and end of outer hair cells(OHCs) in resting state and in response to Nimodipine treatment.Methods Non-invasive micro-test techniques were used to study Ca2+ in isolated OHCs in adult guinea pigs.Results Four types of Ca2+ transport were identified in OHCs on basilar membrane tissue fragments:influx at the head of with efflux at the bottom(type 1):efflux at the head of OHCs with influx at the bottom(type 2);influx at the both head and bottom(type 3);and efflux at the both head and bottom(type 4).However,only type 1 and type 3 of Ca2+ ion transport were detected in the cochlea.We propose that Ca2+ ion transport exists in adult guinea pig cochlear OHCs in resting state and is variable.Ca2 + flow in OHC can be inhibited by Nimodipine in resting state.展开更多
The spatial distribution of wind speed varies greatly over steep complex terrain, thus the selection of an optimal site in such terrain for wind turbine construction requires great care. We have developed a numerical ...The spatial distribution of wind speed varies greatly over steep complex terrain, thus the selection of an optimal site in such terrain for wind turbine construction requires great care. We have developed a numerical model for simulating unsteady flows called RIAM-COMPACT (Research Institute for Applied Mechanics, Kyushu University, COM putational Prediction of Airflow over Complex Terrain), which is based on the LES (Large-Eddy Simulation) technique. The computational domain of RIAM-COMPACT can be varied from several meters to several kilometers, and the model is able to predict airflow over complex terrain with high accuracy. The present paper discusses the application of RIAM-COMPACT to the micro-siting of wind turbines at sites outside Japan. The results from two case studies will be presented.展开更多
Radiotherapy has long been used as an adjunct to neurosurgery for the treatment of malignant and benign intracranial tumors and other intracranial lesions.Intracranial tumors can be irradiated in three different ways:...Radiotherapy has long been used as an adjunct to neurosurgery for the treatment of malignant and benign intracranial tumors and other intracranial lesions.Intracranial tumors can be irradiated in three different ways:Ⅰ) fractional radiotherapy, Ⅱ) stereotactic radiotherapy and Ⅲ) stereotactic radiosurgery. The third is most often by means of a gamma knife or a specially designed linear accelerator. Additionally, radiosurgery is increasingly used in combination with systemic therapy to treat metastases.展开更多
The rapid and precise fabrication of multiscale supramolecular assemblies using micro/nanofluidic techniques has emerged as a dynamic area of research in supramolecular chemistry, materials chemistry, and organic chem...The rapid and precise fabrication of multiscale supramolecular assemblies using micro/nanofluidic techniques has emerged as a dynamic area of research in supramolecular chemistry, materials chemistry, and organic chemistry. This review summarizes the application of micro/nanofluidic techniques in constructing supramolecular assemblies, including nanoscale supramolecular assemblies such as macrocycles and cages, microscale supramolecular assemblies such as metal organic frameworks (MOFs) and covalent organic frameworks (COFs), and macroscale supramolecular assemblies such as supramolecular hydrogels. Compared to conventional synthesis methods, micro/nanofluidic techniques for the production of supramolecular assemblies have significant advantages, including enhanced safety, high reaction rates, improved selectivity/yield, and scalability. Additionally, micro/nanofluidic systems facilitate the creation of precisely controllable micro/nanoconfined environments, allowing for a unique flow behavior that improves our understanding of the supramolecular self-assembly process. Such systems may also lead to the development of novel supramolecular assemblies that differ from those generated via traditional methods.展开更多
The most common methods for three-dimensional reconstruction of peripheral nerve fascicles include histological and radiology techniques. Histological techniques have many drawbacks including an enormous manual worklo...The most common methods for three-dimensional reconstruction of peripheral nerve fascicles include histological and radiology techniques. Histological techniques have many drawbacks including an enormous manual workload and poor image registration. Micro-magnetic resonance imaging(Micro-MRI), an emerging radiology technique, has been used to report results in the brain, liver and tumor tissues. However, micro-MRI usage for obtaining intraneural structures has not been reported. The aim of this study was to present a new imaging method for three-dimensional reconstruction of peripheral nerve fascicles by ~1T micro-MRI. Freshly harvested sciatic nerve samples from an amputated limb were divided into four groups. Two different scanning conditions(Mannerist Solution/GD-DTPA contrast agent, distilled water) were selected, and both T1 and T2 phases programmed for each scanning condition. Three clinical surgeons evaluated the quality of the images via a standardized scale. Moreover, to analyze deformation of the two-dimensional image, the nerve diameter and total area of the micro-MRI images were compared after hematoxylin-eosin staining. The results show that rapid micro-MRI imaging method can be used for three-dimensional reconstruction of the fascicle structure. Nerve sample immersed in contrast agent(Mannerist Solution/GD-DTPA) and scanned in the T1 phase was the best. Moreover, the nerve sample was scanned freshly and can be recycled for other procedures. MRI images show better stability and smaller deformation compared with histological images. In conclusion, micro-MRI provides a feasible and rapid method for three-dimensional reconstruction of peripheral nerve fascicles, which can clearly show the internal structure of the peripheral nerve.展开更多
Compound ceramics coatings on the Ti-6Al-4V alloy were prepared by the direct current micro-plasma oxidation (MPO) in NaAlO2 solution. The composition and morphology of the coatings were studied with the X-ray diffr...Compound ceramics coatings on the Ti-6Al-4V alloy were prepared by the direct current micro-plasma oxidation (MPO) in NaAlO2 solution. The composition and morphology of the coatings were studied with the X-ray diffraction (XRD) and the scanning electron microscopy (SEM), respectively. Inductively coupled plasma atomic emission spectrometer technique was used to analyze the solution features of Ti-6Al-4V alloy in the process of preparation. The results reveal that Al2TiO5 forms in the coatings at the initial stages of MPO reaction, and its content changes rapidly with the reaction continuing: after 20 min, the ceramics coatings are composed of α-Al2O3, 7-Al2O3 and Al2TiO5, but after 40 min, its main composition is of α-Al2O3. The content of Ti in the solution will increase when the MPO time extends, and as will Al in the anode area until, after 30 min, it reaches the maximum and keeps constant from then on. Both substrata of Ti and Al in the electrolyte join the MPO reaction at the initial stage, where the formation of Al2TiO5 happens; but as the MPO reaction prolongs, more and more Al in the electrolyte will take part in the reaction, leading to the appearance of a large amount ofAl2O3.展开更多
文摘The sensitivity and selectivity of gas sensors are related with not only sensing material,but also their operating temperatures.Applying this property,temperature modulation technique has been proposed to improve the selectivity of gas sensors.With a newly developed alumina based micro gas sensor,the sensitivity to CO and CH_4 at different operating temperatures was investigated.By modulating the temperature of the sensor at pulse and sine wave modes with different frequencies and amplitudes,the dynamic responses of the sensor were measured and processed.Results show that the modulating waveshape plays an important role in the improvement of selectivity,while the influence of frequency is small at the suitable sampling frequency in the range of 25 mHz~200 mHz.
基金Supported by the City University of Hong Kong Foundation (No.9010007) the Innovation Project Funds of CAS (Nos. KZCX2-SW-118+1 种基金 KZCX3-SW-120) the NKPBR Project Fund (No.2001CCB00100) and the SKLLQG0324 Foundation.
文摘The oxide contents of TiO2, MnO, SrO and Fe2O3 in the body and graze layers of the Jiao-Tan-Xia (JTX) and Lao-Hu-Dong (LHD) porcelains in Southern Song Dynasty (1127-1279 A.D.) have been determined using an In- ternational Eagle-II μ-probe EDXRF spectrometer. The results show that the contents in the body are much different from those in the graze one. Therefore, the transient thickness (TT) between the body and graze layers can be meas- ured through determination of a distance of the drift change in the chemical contents. The TT average for the JTX porcelains is 161μm, while that for the LHD porcelains is 258μm, which are consistent with a range of 0.15-0.3mm in the Ru-Yao porcelains. The different TT is related to the variances in firing temperature and raw material for manu- facturing the respective porcelains.
文摘This paper analyses the effect of water storage and soil moisture conservation by means of micro water collecting technique in the dryland field of spring maize. The results indicate that the rainfall infiltration depth is deeper by means of micro water collecting treatment than that of the control. In micro water collecting treatment, the amount of soil water storage within 0~200 cm of soil layers increases by 50.5 mm, 13.5~58.6 mm, and 24.5 mm respectively during seedling stage, the critical stage of water requirement and the ripening and harvesting stage compared with the control. The micro water collecting technique not only has the function of regulating and adjusting the amount and distribution of field evapotranspiration, but also can raise the water use efficiency, which results in an obvious effect of increasing crop yield, especially in the dry years.
文摘Objective To test Calcium ion(Ca2+) flow at the head and end of outer hair cells(OHCs) in resting state and in response to Nimodipine treatment.Methods Non-invasive micro-test techniques were used to study Ca2+ in isolated OHCs in adult guinea pigs.Results Four types of Ca2+ transport were identified in OHCs on basilar membrane tissue fragments:influx at the head of with efflux at the bottom(type 1):efflux at the head of OHCs with influx at the bottom(type 2);influx at the both head and bottom(type 3);and efflux at the both head and bottom(type 4).However,only type 1 and type 3 of Ca2+ ion transport were detected in the cochlea.We propose that Ca2+ ion transport exists in adult guinea pig cochlear OHCs in resting state and is variable.Ca2 + flow in OHC can be inhibited by Nimodipine in resting state.
文摘The spatial distribution of wind speed varies greatly over steep complex terrain, thus the selection of an optimal site in such terrain for wind turbine construction requires great care. We have developed a numerical model for simulating unsteady flows called RIAM-COMPACT (Research Institute for Applied Mechanics, Kyushu University, COM putational Prediction of Airflow over Complex Terrain), which is based on the LES (Large-Eddy Simulation) technique. The computational domain of RIAM-COMPACT can be varied from several meters to several kilometers, and the model is able to predict airflow over complex terrain with high accuracy. The present paper discusses the application of RIAM-COMPACT to the micro-siting of wind turbines at sites outside Japan. The results from two case studies will be presented.
文摘Radiotherapy has long been used as an adjunct to neurosurgery for the treatment of malignant and benign intracranial tumors and other intracranial lesions.Intracranial tumors can be irradiated in three different ways:Ⅰ) fractional radiotherapy, Ⅱ) stereotactic radiotherapy and Ⅲ) stereotactic radiosurgery. The third is most often by means of a gamma knife or a specially designed linear accelerator. Additionally, radiosurgery is increasingly used in combination with systemic therapy to treat metastases.
基金the National Nature Science Foundation of China (Nos. 22107028 and 22103062)Program of Shanghai Outstanding Academic Leaders (No. 21XD1421200)Science and Technology Commission of Shanghai Municipality (No. 22JC1403900).
文摘The rapid and precise fabrication of multiscale supramolecular assemblies using micro/nanofluidic techniques has emerged as a dynamic area of research in supramolecular chemistry, materials chemistry, and organic chemistry. This review summarizes the application of micro/nanofluidic techniques in constructing supramolecular assemblies, including nanoscale supramolecular assemblies such as macrocycles and cages, microscale supramolecular assemblies such as metal organic frameworks (MOFs) and covalent organic frameworks (COFs), and macroscale supramolecular assemblies such as supramolecular hydrogels. Compared to conventional synthesis methods, micro/nanofluidic techniques for the production of supramolecular assemblies have significant advantages, including enhanced safety, high reaction rates, improved selectivity/yield, and scalability. Additionally, micro/nanofluidic systems facilitate the creation of precisely controllable micro/nanoconfined environments, allowing for a unique flow behavior that improves our understanding of the supramolecular self-assembly process. Such systems may also lead to the development of novel supramolecular assemblies that differ from those generated via traditional methods.
基金supported by grants from the National Key Research and Development Plan of China,No.31670986(to QTZ)the Science and Technology Project of Guangdong Province of China,No.2014B020227001,2017A050501017(to QTZ)the Science and Technology Project of Guangzhou of China,No.201807010082(to QTZ),201704030041(to JQ)
文摘The most common methods for three-dimensional reconstruction of peripheral nerve fascicles include histological and radiology techniques. Histological techniques have many drawbacks including an enormous manual workload and poor image registration. Micro-magnetic resonance imaging(Micro-MRI), an emerging radiology technique, has been used to report results in the brain, liver and tumor tissues. However, micro-MRI usage for obtaining intraneural structures has not been reported. The aim of this study was to present a new imaging method for three-dimensional reconstruction of peripheral nerve fascicles by ~1T micro-MRI. Freshly harvested sciatic nerve samples from an amputated limb were divided into four groups. Two different scanning conditions(Mannerist Solution/GD-DTPA contrast agent, distilled water) were selected, and both T1 and T2 phases programmed for each scanning condition. Three clinical surgeons evaluated the quality of the images via a standardized scale. Moreover, to analyze deformation of the two-dimensional image, the nerve diameter and total area of the micro-MRI images were compared after hematoxylin-eosin staining. The results show that rapid micro-MRI imaging method can be used for three-dimensional reconstruction of the fascicle structure. Nerve sample immersed in contrast agent(Mannerist Solution/GD-DTPA) and scanned in the T1 phase was the best. Moreover, the nerve sample was scanned freshly and can be recycled for other procedures. MRI images show better stability and smaller deformation compared with histological images. In conclusion, micro-MRI provides a feasible and rapid method for three-dimensional reconstruction of peripheral nerve fascicles, which can clearly show the internal structure of the peripheral nerve.
基金National Natural Science Foundation of China (50171026)
文摘Compound ceramics coatings on the Ti-6Al-4V alloy were prepared by the direct current micro-plasma oxidation (MPO) in NaAlO2 solution. The composition and morphology of the coatings were studied with the X-ray diffraction (XRD) and the scanning electron microscopy (SEM), respectively. Inductively coupled plasma atomic emission spectrometer technique was used to analyze the solution features of Ti-6Al-4V alloy in the process of preparation. The results reveal that Al2TiO5 forms in the coatings at the initial stages of MPO reaction, and its content changes rapidly with the reaction continuing: after 20 min, the ceramics coatings are composed of α-Al2O3, 7-Al2O3 and Al2TiO5, but after 40 min, its main composition is of α-Al2O3. The content of Ti in the solution will increase when the MPO time extends, and as will Al in the anode area until, after 30 min, it reaches the maximum and keeps constant from then on. Both substrata of Ti and Al in the electrolyte join the MPO reaction at the initial stage, where the formation of Al2TiO5 happens; but as the MPO reaction prolongs, more and more Al in the electrolyte will take part in the reaction, leading to the appearance of a large amount ofAl2O3.