A phase-derived velocity measurement method is proposed in a wideband coherent system,based on a precise echo model considering the inner pulse Doppler effect caused by fast moving targets.The Cramer-Rao low band of v...A phase-derived velocity measurement method is proposed in a wideband coherent system,based on a precise echo model considering the inner pulse Doppler effect caused by fast moving targets.The Cramer-Rao low band of velocity measurement precision is deduced,demonstrating the high precision of the proposed method.Simulations and out-field experiments further validate the effectiveness of the proposed method in high-precision measurement and micro-motion extraction for targets with weak reflection intensity.Compared with the long-time integration approaches for velocity measurement,the phase-derived method is easy to implement and meets the requirement for high data rate,which makes it suitable for micro-motion feature extraction in wideband systems.展开更多
This paper proposes a new method for measurement of the roll error motion of a slide table in a precision linear slide. The proposed method utilizes a pair of clinometers in the production process of a precision linea...This paper proposes a new method for measurement of the roll error motion of a slide table in a precision linear slide. The proposed method utilizes a pair of clinometers in the production process of a precision linear slide, where the roll error motion measurement will be carried out repeatedly to confirm whether the surface form errors of slide guideways in the linear slide are su ciently corrected by hand scraping process. In the proposed method, one of the clinometers is mounted on the slide table, while the other is placed on a vibration isolation table, on which the precision linear slide is mounted, so that influences of external disturbances can be cancelled. An experimental setup is built on a vibration isolation table, and some experiments are carried out to verify the feasibility of the proposed method.展开更多
The purpose of this research is a quantitative analysis of movement patterns of dance, which cannot be analyzed with a motion capture system alone, using simultaneous measurement of body motion and biophysical informa...The purpose of this research is a quantitative analysis of movement patterns of dance, which cannot be analyzed with a motion capture system alone, using simultaneous measurement of body motion and biophysical information. In this research, two kinds of same leg movement are captured by simultaneous measurement; one is a leg movement with given strength, the other is a leg movement without strength on condition of basic experiment using optical motion capture and electromyography (EMG) equipment in order to quantitatively analyze characteristics of leg movement. Also, we measured the motion of the traditional Japanese dance using the constructed system. We can visualize leg movement of Japanese dance by displaying a 3D CG character animation with motion data and EMG data. In addition, we expect that our research will help dancers and researchers on dance through giving new information on dance movement which cannot be analyzed with only motion capture.展开更多
The existence of the principal directions of the ground motion based on Arias intensity is well-known. These principal directions do not necessarily coincide with the orientations of recording sensors or with the orie...The existence of the principal directions of the ground motion based on Arias intensity is well-known. These principal directions do not necessarily coincide with the orientations of recording sensors or with the orientations along which the ground motion parameters such as the peak ground acceleration and the pseudo-spectral acceleration (PSA) are maximum. This is evidenced by the fact that the maximum PSA at different natural vibration periods for horizontal excitations do not correspond to the same orientation. A recent analysis carried out for California earthquake records suggests that an orientation-dependent ground motion measurement for horizontal excitations can be developed. The main objective of this study is to investigate and provide seismic ground motion measurements in the horizontal plane, including bidirectional horizontal ground motions, for Mexican interplate and inslab earthquake records. Extensive statistical analyses of PSA are conducted for the assessment. The analysis results suggest that similar to the case of California records, the average behavior of the ratio of the PSA to the maximum resulting PSA can be approximated by a quarter of an ellipse in one quadrant; and that the ratio can be considered to be independent of the value of the maximum resulting PSA, earthquake magnitude, earthquake distance and the focal depth. Sets of response ratios and attenuation relationships that can be used to represent a bidirectional horizontal ground motion measurement for Mexican interplate and inslab earthquakes were also developed.展开更多
We propose a quantum nondemolition measurement of the collective motional energy of two trapped ions for the first time.It is based on the excitation of the two ions by two lasers with appropriate frequencies and ampl...We propose a quantum nondemolition measurement of the collective motional energy of two trapped ions for the first time.It is based on the excitation of the two ions by two lasers with appropriate frequencies and amplitudes.The scheme also provides a new possibility of preparing vibrational Fock states and laser cooling.展开更多
Magnetism parameters vary with the position and the speed of electromagnetic actuator's motion parts.The measurement unit presented in the paper can be applied to get the position and the speed feedback informatio...Magnetism parameters vary with the position and the speed of electromagnetic actuator's motion parts.The measurement unit presented in the paper can be applied to get the position and the speed feedback information from the measurement of electromagnetism parameters,and can constitute the untouched feedback sensing unit in the closed-loop motion control,and it adapts to the diversified feedback control of electromagnetic actuator.The digital miniaturization meter,based on MSP430 single chip processor,which can do the multi-purpose measurement of Φ & B through the menu selection,can be used for the electromagnetic actuator's performance evaluation and improvement,and also the online quality control in production process.Both real-time data graph and data table can be displayed in the meter.The paper presents the system's structure,describes the principle,discusses the working modes,and shows the software flowchart and the measuring results.展开更多
In order to apply the LM device previously developed to precisely measuring small motion trajectories located on the different motion planes, three major improvements are successfully performed under the condition of ...In order to apply the LM device previously developed to precisely measuring small motion trajectories located on the different motion planes, three major improvements are successfully performed under the condition of completely maintaining the advantages of the device. These improvements include 1) development of a novel connection mechanism to smoothly attach the device to the spindle of a machining centre;2) employment of a new data sampling method to achieve a high sampling frequency independent of the operating system of the control computer;and 3) proposal of a set-up method to conveniently install the device on the test machining centre with respect to different motion planes. Practical measurement experiment results with the improved device on a machining centre sufficiently demonstrate the effectiveness of the improvements and confirm several features including a very good response to small displacement close to the resolution of the device, high precision, repeatability and reliance. Moreover, based on the measurement results for a number of trajectories for a wide range of motion conditions, the error characteristics of small size motions are systematically discussed and the effect of the movement size and feed rate on the motion accuracy is verified for the machining centre tested.展开更多
Ground-motion Intensity Measures (IMs) are used to quantify the strength of ground motions and evaluate the response of structures. IMs act as a link between seismic demand and seismic hazard analysis and therefore, h...Ground-motion Intensity Measures (IMs) are used to quantify the strength of ground motions and evaluate the response of structures. IMs act as a link between seismic demand and seismic hazard analysis and therefore, have a key role in performance-based earthquake engineering. Many studies have been carried out on the determination of suitable IMs in terms of effi ciency, suffi ciency and scaling robustness. The majority of these investigations focused on ordinary structures such as buildings and bridges, and only a few were about buried pipelines. In the current study, the optimal IMs for predicting the seismic demand of continuous buried steel pipelines under near-fi eld pulse-like ground motion records is investigated. Incremental dynamic analysis is performed using twenty ground motion records. Using the results of the regression analysis, the optimality of 23 potential IMs are studied. It is concluded that specifi c energy density (SED) followed by VSI[ω1(PGD+RMSd )] are the optimal IMs based on effi ciency, suffi ciency and scaling robustness for seismic response evaluation of buried pipelines under near-fi eld ground motions.展开更多
In order to stabilize the video module to build digital image stabilization image sequence, a method of using inertial measurement system is proposed. Through applying real-time attitude in- formation of the camera th...In order to stabilize the video module to build digital image stabilization image sequence, a method of using inertial measurement system is proposed. Through applying real-time attitude in- formation of the camera that obtained by high-precision attitude sensor to estimate the image motion vector and then to compensate for image, the purpose of stabilizing the image sequence can be a- chieved. Experiments demonstrate that this method has a high image stabilization precision, and the up to 16 frame/s video output rate completely meets the real-time requirements.展开更多
The performance of clay-pile-pier system under earthquake shaking was comprehensively examined via three-dimensional finite element analyses,in which the complex stress-strain relationships of a clay and piled pier sy...The performance of clay-pile-pier system under earthquake shaking was comprehensively examined via three-dimensional finite element analyses,in which the complex stress-strain relationships of a clay and piled pier system were depicted by a hyperbolic-hysteretic and an equivalent elastoplastic model,respectively.One hundred twenty ground motions with varying peak accelerations were considered,along with the variations in bridge superstructure mass and pile flexural rigidity.Comprehensive comparison studies suggested that peak pile-cap acceleration and peak pile-cap velocity are the optimal ground motion intensity measures for seismic responses of the pier and the pile,respectively.Furthermore,based on two optimal ground motion intensity measures and using curvature ductility to quantify different damage states,seismic fragility analyses were performed.The pier generally had no evident damage except when the bridge girder mass was equal to 960 t,which seemed to be comparatively insensitive to the varying pile flexural rigidity.In comparison,the pile was found to be more vulnerable to seismic damage and its failure probabilities tended to clearly reduce with the increment of pile flexural rigidity,while the influence of the bridge girder mass was relatively minor.展开更多
A novel motion-blur-based method for measuring the angular amplitude of a high-frequency rotational vibration is schemed. The proposed approach combines the active vision concept and the mechanism of motion-from-blur,...A novel motion-blur-based method for measuring the angular amplitude of a high-frequency rotational vibration is schemed. The proposed approach combines the active vision concept and the mechanism of motion-from-blur, generates motion blur on the image plane actively by extending exposure time, and utilizes the motion blur information in polar images to estimate the angular amplitude of a high-frequency rotational vibration. This method obtains the analytical results of the angular vibration amplitude from the geometric moments of a motion blurred polar image and an unblurred image for reference. Experimental results are provided to validate the presented scheme.展开更多
Application of the artificial neural network (ANN) to predict pseudospectral acceleration or peak ground acceleration is explored in the study. The training of ANN model is carried out using feed-forward backpropaga...Application of the artificial neural network (ANN) to predict pseudospectral acceleration or peak ground acceleration is explored in the study. The training of ANN model is carried out using feed-forward backpropagation method and about 600 records from 39 California earthquakes. The statistics of the residuals or modeling error for the trained ANN-based models are almost the same as those for the parametric ground motion prediction equations, derived through regression analysis; the residual or modeling error can be modeled as a normal variate. The similarity and differences between the predictions by these two approaches are shown. The trained ANN-based models, however, are not robust because the models with almost identical mean square errors do not always lead to the same predictions. This undesirable behaviour for predicting the ground motion measures has not been shown or discussed in the literature; the presented results, at least, serve to raise questions and caution on this problem. A practical approach to ameliorate this problem, perhaps, is to consider several trained ANN models, and to take the average of the predicted values from the trained ANN models as the predicted ground motion measure.展开更多
The correlation between ground motion intensity measures (IM) and single-degree-of-freedom (SDOF) deformation demands is described in this study. Peak ground acceleration (APG), peak ground velocity (VPG), pea...The correlation between ground motion intensity measures (IM) and single-degree-of-freedom (SDOF) deformation demands is described in this study. Peak ground acceleration (APG), peak ground velocity (VPG), peak ground displacement (DPG), spectral acceleration at the first-mode period of vibration [As(T1)] and ratio of VPG to APG are used as IM parameters, and the correlation is characterized by correlation coefficients p. The numerical results obtained by nonlinear dynamic analyses have shown good correlation between As(T1) or VPG and deformation demands. Furthermore, the effect of As(T1) and VPG as IM on the dispersion of the mean value of deformation demands is also investigated for SDOF systems with three different periods T=0.3 s, 1.0 s, 3.0 s respectively.展开更多
It will show, a recent extension of special relativity on the grounds of a novel concept of velocity, which also predicts the speed of transversal motions on the plane of the sky to increase with enduring observation ...It will show, a recent extension of special relativity on the grounds of a novel concept of velocity, which also predicts the speed of transversal motions on the plane of the sky to increase with enduring observation time, to fully explain the differences of the observational results of the former experiments referring to the distance of the Pleiades from Earth.展开更多
Earthquake investigations have shown that near-fault pulse-like(NF-P)ground motions have unique characteristics compared to near-fault non-pulse-like(NF-NP)and far-field(FF)ground motions.It is necessary to study the ...Earthquake investigations have shown that near-fault pulse-like(NF-P)ground motions have unique characteristics compared to near-fault non-pulse-like(NF-NP)and far-field(FF)ground motions.It is necessary to study the seismic response of pile-supported wharf(PSW)structures under NF-P ground motions.In this study,a three-dimensional finite element numerical model is created to simulate a PSW.By imparting three types of ground motion,the engineering demand parameters(EDPs)of PSW under NF-P ground motions were analyzed and compared,in which EDPs are the maximum displacement and bending moment of the piles.Twenty intensity measures(IMs)were selected to characterize the properties of ground motions.The correlation between IMs and EDPs was explored.The results show that the piles present larger displacement and bending moment under NF-P ground motions compared to NF-NP and FF ground motions.None of the IMs have a high correlation with EDPs under NF-P ground motions,and these IMs are more applicable to FF ground motions.The correlation coefficients between EDPs and IMs under three types of ground motion were obtained,which will provide a valuable reference for the seismic design of PSWs.展开更多
The Wenchuan earthquake has altered the crustal motion characteristics in the eastern margin of the Tibetan Plateau and adjacent regions.Using discontinuous GPS survey data for 2008–2012, the velocity field for the E...The Wenchuan earthquake has altered the crustal motion characteristics in the eastern margin of the Tibetan Plateau and adjacent regions.Using discontinuous GPS survey data for 2008–2012, the velocity field for the Eurasia reference framework has been obtained, and the general trend of contemporary crustal motion after the occurrence of the Wenchuan earthquake has been studied.In addition, using the velocity field, the block movement velocity has been estimated by least-squares fitting.Furthermore, the properties and displacement rates of main faults have been obtained from the differences in velocity vectors of the blocks on both sides of the faults.The results reveal that there are no obvious changes in the general characteristics of crustal motion in this area after the Wenchuan earthquake.The earthquake mainly changed the rate of the movement of the Chuan-Qing block and caused variation in the movement direction of the South China block.The effect of the earthquake on faults is mainly reflected in variations in fault displacement velocity; there is no fundamental change in the properties of fault activity.The displacement rates of the Xianshuihe fault decreased by 3–4 mm/a, the Longmenshan fault increased by 9–10 mm/a, and the northern segment of the Anninghe fault increased by approximately 9 mm/a.Furthermore, the displacement rates of the Minjiang, Xueshan, Huya, Longquanshan, and Xinjin faults increased by 2–3 mm/a.This implies that the effects of the Wenchuan earthquake on crustal movement can mainly be observed in the Chuan-Qing, South China, and N-Chuan-Dian blocks and their internal faults, as well as the Xianshuihe and Longmenshan faults and the northern section of the Anninghe fault.The reason for this is that the Wenchuan earthquake disturbed the kinematic and dynamic balance in the region.展开更多
Technological development of motion and posture analyses is rapidly progressing,especially in rehabilitation settings and sport biomechanics.Consequently,clear discrimination among different measurement systems is req...Technological development of motion and posture analyses is rapidly progressing,especially in rehabilitation settings and sport biomechanics.Consequently,clear discrimination among different measurement systems is required to diversify their use as needed.This review aims to resume the currently used motion and posture analysis systems,clarify and suggest the appropriate approaches suitable for specific cases or contexts.The currently gold standard systems of motion analysis,widely used in clinical settings,present several limitations related to marker placement or long procedure time.Fully automated and markerless systems are overcoming these drawbacks for conducting biomechanical studies,especially outside laboratories.Similarly,new posture analysis techniques are emerging,often driven by the need for fast and non-invasive methods to obtain high-precision results.These new technologies have also become effective for children or adolescents with non-specific back pain and postural insufficiencies.The evolutions of these methods aim to standardize measurements and provide manageable tools in clinical practice for the early diagnosis of musculoskeletal pathologies and to monitor daily improvements of each patient.Herein,these devices and their uses are described,providing researchers,clinicians,orthopedics,physical therapists,and sports coaches an effective guide to use new technologies in their practice as instruments of diagnosis,therapy,and prevention.展开更多
In order to study the differences in vertical component between onshore and offshore motions,the vertical-to-horizontal peak ground acceleration ratio(V/H PGA ratio) and vertical-to-horizontal response spectral ratio(...In order to study the differences in vertical component between onshore and offshore motions,the vertical-to-horizontal peak ground acceleration ratio(V/H PGA ratio) and vertical-to-horizontal response spectral ratio(V/H) were investigated using the ground motion recordings from the K-NET network and the seafloor earthquake measuring system(SEMS).The results indicate that the vertical component of offshore motions is lower than that of onshore motions.The V/H PGA ratio of acceleration time histories at offshore stations is about 50%of the ratio at onshore stations.The V/H for offshore ground motions is lower than that for onshore motions,especially for periods less than 0.8 s.Furthermore,based on the results in statistical analysis for offshore recordings in the K-NET,the simplified V/H design equations for offshore motions in minor and moderate earthquakes are proposed for seismic analysis of offshore structures.展开更多
Inertial measurement unit (IMU) is a standard motion sensor in modern airborne SAR systems. But how to remove its systematic error is a difficult problem, which impacts the improvement of resolution in azimuth. The te...Inertial measurement unit (IMU) is a standard motion sensor in modern airborne SAR systems. But how to remove its systematic error is a difficult problem, which impacts the improvement of resolution in azimuth. The technique of motion compensation presented in this paper, uses the GPS as a reference system to estimate and correct the systematic error of the IMU on the concept of linear unbiased minimum variance (LUMV). This new and effective method achieves very accurate position measurement (both high and low frequency) of the APC in not only short but also long terms, so that it can satisfy the requirement of high resolution airborne SAR. In the last section of the paper, some experimental simulations from raw data are given.展开更多
基金Supported by the National Natural Science Foundation of China(61301189)111 Project of China(B14010)
文摘A phase-derived velocity measurement method is proposed in a wideband coherent system,based on a precise echo model considering the inner pulse Doppler effect caused by fast moving targets.The Cramer-Rao low band of velocity measurement precision is deduced,demonstrating the high precision of the proposed method.Simulations and out-field experiments further validate the effectiveness of the proposed method in high-precision measurement and micro-motion extraction for targets with weak reflection intensity.Compared with the long-time integration approaches for velocity measurement,the phase-derived method is easy to implement and meets the requirement for high data rate,which makes it suitable for micro-motion feature extraction in wideband systems.
基金supported by Japan Society for the Promotion and Science (JSPS)
文摘This paper proposes a new method for measurement of the roll error motion of a slide table in a precision linear slide. The proposed method utilizes a pair of clinometers in the production process of a precision linear slide, where the roll error motion measurement will be carried out repeatedly to confirm whether the surface form errors of slide guideways in the linear slide are su ciently corrected by hand scraping process. In the proposed method, one of the clinometers is mounted on the slide table, while the other is placed on a vibration isolation table, on which the precision linear slide is mounted, so that influences of external disturbances can be cancelled. An experimental setup is built on a vibration isolation table, and some experiments are carried out to verify the feasibility of the proposed method.
基金This work was partly supported by the"21st Century COE program",the"Open Research Center program"the"Grantin-in-Aid for Scientific Research"of the Ministry of Education,Science,Sports and Culture(No.(B)16300035).
文摘The purpose of this research is a quantitative analysis of movement patterns of dance, which cannot be analyzed with a motion capture system alone, using simultaneous measurement of body motion and biophysical information. In this research, two kinds of same leg movement are captured by simultaneous measurement; one is a leg movement with given strength, the other is a leg movement without strength on condition of basic experiment using optical motion capture and electromyography (EMG) equipment in order to quantitatively analyze characteristics of leg movement. Also, we measured the motion of the traditional Japanese dance using the constructed system. We can visualize leg movement of Japanese dance by displaying a 3D CG character animation with motion data and EMG data. In addition, we expect that our research will help dancers and researchers on dance through giving new information on dance movement which cannot be analyzed with only motion capture.
基金Natural Science and Engineering Research Council of Canada, the University of Western Ontario and the National Council of Science and Technology (CONACyT) of Mexico
文摘The existence of the principal directions of the ground motion based on Arias intensity is well-known. These principal directions do not necessarily coincide with the orientations of recording sensors or with the orientations along which the ground motion parameters such as the peak ground acceleration and the pseudo-spectral acceleration (PSA) are maximum. This is evidenced by the fact that the maximum PSA at different natural vibration periods for horizontal excitations do not correspond to the same orientation. A recent analysis carried out for California earthquake records suggests that an orientation-dependent ground motion measurement for horizontal excitations can be developed. The main objective of this study is to investigate and provide seismic ground motion measurements in the horizontal plane, including bidirectional horizontal ground motions, for Mexican interplate and inslab earthquake records. Extensive statistical analyses of PSA are conducted for the assessment. The analysis results suggest that similar to the case of California records, the average behavior of the ratio of the PSA to the maximum resulting PSA can be approximated by a quarter of an ellipse in one quadrant; and that the ratio can be considered to be independent of the value of the maximum resulting PSA, earthquake magnitude, earthquake distance and the focal depth. Sets of response ratios and attenuation relationships that can be used to represent a bidirectional horizontal ground motion measurement for Mexican interplate and inslab earthquakes were also developed.
文摘We propose a quantum nondemolition measurement of the collective motional energy of two trapped ions for the first time.It is based on the excitation of the two ions by two lasers with appropriate frequencies and amplitudes.The scheme also provides a new possibility of preparing vibrational Fock states and laser cooling.
基金Sponsored by the Multidiscipline Scientific Research Foundation of Harbin Institute of Technology(Grant No.HIT.MD2002.13).
文摘Magnetism parameters vary with the position and the speed of electromagnetic actuator's motion parts.The measurement unit presented in the paper can be applied to get the position and the speed feedback information from the measurement of electromagnetism parameters,and can constitute the untouched feedback sensing unit in the closed-loop motion control,and it adapts to the diversified feedback control of electromagnetic actuator.The digital miniaturization meter,based on MSP430 single chip processor,which can do the multi-purpose measurement of Φ & B through the menu selection,can be used for the electromagnetic actuator's performance evaluation and improvement,and also the online quality control in production process.Both real-time data graph and data table can be displayed in the meter.The paper presents the system's structure,describes the principle,discusses the working modes,and shows the software flowchart and the measuring results.
文摘In order to apply the LM device previously developed to precisely measuring small motion trajectories located on the different motion planes, three major improvements are successfully performed under the condition of completely maintaining the advantages of the device. These improvements include 1) development of a novel connection mechanism to smoothly attach the device to the spindle of a machining centre;2) employment of a new data sampling method to achieve a high sampling frequency independent of the operating system of the control computer;and 3) proposal of a set-up method to conveniently install the device on the test machining centre with respect to different motion planes. Practical measurement experiment results with the improved device on a machining centre sufficiently demonstrate the effectiveness of the improvements and confirm several features including a very good response to small displacement close to the resolution of the device, high precision, repeatability and reliance. Moreover, based on the measurement results for a number of trajectories for a wide range of motion conditions, the error characteristics of small size motions are systematically discussed and the effect of the movement size and feed rate on the motion accuracy is verified for the machining centre tested.
文摘Ground-motion Intensity Measures (IMs) are used to quantify the strength of ground motions and evaluate the response of structures. IMs act as a link between seismic demand and seismic hazard analysis and therefore, have a key role in performance-based earthquake engineering. Many studies have been carried out on the determination of suitable IMs in terms of effi ciency, suffi ciency and scaling robustness. The majority of these investigations focused on ordinary structures such as buildings and bridges, and only a few were about buried pipelines. In the current study, the optimal IMs for predicting the seismic demand of continuous buried steel pipelines under near-fi eld pulse-like ground motion records is investigated. Incremental dynamic analysis is performed using twenty ground motion records. Using the results of the regression analysis, the optimality of 23 potential IMs are studied. It is concluded that specifi c energy density (SED) followed by VSI[ω1(PGD+RMSd )] are the optimal IMs based on effi ciency, suffi ciency and scaling robustness for seismic response evaluation of buried pipelines under near-fi eld ground motions.
文摘In order to stabilize the video module to build digital image stabilization image sequence, a method of using inertial measurement system is proposed. Through applying real-time attitude in- formation of the camera that obtained by high-precision attitude sensor to estimate the image motion vector and then to compensate for image, the purpose of stabilizing the image sequence can be a- chieved. Experiments demonstrate that this method has a high image stabilization precision, and the up to 16 frame/s video output rate completely meets the real-time requirements.
基金National Natural Science Foundation of China under Grant Nos.52178353,51808421the Fundamental Research Funds for the Central Universities(WUT:2020III043)。
文摘The performance of clay-pile-pier system under earthquake shaking was comprehensively examined via three-dimensional finite element analyses,in which the complex stress-strain relationships of a clay and piled pier system were depicted by a hyperbolic-hysteretic and an equivalent elastoplastic model,respectively.One hundred twenty ground motions with varying peak accelerations were considered,along with the variations in bridge superstructure mass and pile flexural rigidity.Comprehensive comparison studies suggested that peak pile-cap acceleration and peak pile-cap velocity are the optimal ground motion intensity measures for seismic responses of the pier and the pile,respectively.Furthermore,based on two optimal ground motion intensity measures and using curvature ductility to quantify different damage states,seismic fragility analyses were performed.The pier generally had no evident damage except when the bridge girder mass was equal to 960 t,which seemed to be comparatively insensitive to the varying pile flexural rigidity.In comparison,the pile was found to be more vulnerable to seismic damage and its failure probabilities tended to clearly reduce with the increment of pile flexural rigidity,while the influence of the bridge girder mass was relatively minor.
基金This project is supported by National Natural Science Foundation of China (No. 50375099, No. 50390064)
文摘A novel motion-blur-based method for measuring the angular amplitude of a high-frequency rotational vibration is schemed. The proposed approach combines the active vision concept and the mechanism of motion-from-blur, generates motion blur on the image plane actively by extending exposure time, and utilizes the motion blur information in polar images to estimate the angular amplitude of a high-frequency rotational vibration. This method obtains the analytical results of the angular vibration amplitude from the geometric moments of a motion blurred polar image and an unblurred image for reference. Experimental results are provided to validate the presented scheme.
基金The financial support received from the Natural Science and Engineering Research Council of Canadathe University of Western Ontario
文摘Application of the artificial neural network (ANN) to predict pseudospectral acceleration or peak ground acceleration is explored in the study. The training of ANN model is carried out using feed-forward backpropagation method and about 600 records from 39 California earthquakes. The statistics of the residuals or modeling error for the trained ANN-based models are almost the same as those for the parametric ground motion prediction equations, derived through regression analysis; the residual or modeling error can be modeled as a normal variate. The similarity and differences between the predictions by these two approaches are shown. The trained ANN-based models, however, are not robust because the models with almost identical mean square errors do not always lead to the same predictions. This undesirable behaviour for predicting the ground motion measures has not been shown or discussed in the literature; the presented results, at least, serve to raise questions and caution on this problem. A practical approach to ameliorate this problem, perhaps, is to consider several trained ANN models, and to take the average of the predicted values from the trained ANN models as the predicted ground motion measure.
基金National Natural Science Foundation of China (50578007)
文摘The correlation between ground motion intensity measures (IM) and single-degree-of-freedom (SDOF) deformation demands is described in this study. Peak ground acceleration (APG), peak ground velocity (VPG), peak ground displacement (DPG), spectral acceleration at the first-mode period of vibration [As(T1)] and ratio of VPG to APG are used as IM parameters, and the correlation is characterized by correlation coefficients p. The numerical results obtained by nonlinear dynamic analyses have shown good correlation between As(T1) or VPG and deformation demands. Furthermore, the effect of As(T1) and VPG as IM on the dispersion of the mean value of deformation demands is also investigated for SDOF systems with three different periods T=0.3 s, 1.0 s, 3.0 s respectively.
文摘It will show, a recent extension of special relativity on the grounds of a novel concept of velocity, which also predicts the speed of transversal motions on the plane of the sky to increase with enduring observation time, to fully explain the differences of the observational results of the former experiments referring to the distance of the Pleiades from Earth.
基金National Natural Science Foundation of China under Grant Nos.42072310 and 51808307。
文摘Earthquake investigations have shown that near-fault pulse-like(NF-P)ground motions have unique characteristics compared to near-fault non-pulse-like(NF-NP)and far-field(FF)ground motions.It is necessary to study the seismic response of pile-supported wharf(PSW)structures under NF-P ground motions.In this study,a three-dimensional finite element numerical model is created to simulate a PSW.By imparting three types of ground motion,the engineering demand parameters(EDPs)of PSW under NF-P ground motions were analyzed and compared,in which EDPs are the maximum displacement and bending moment of the piles.Twenty intensity measures(IMs)were selected to characterize the properties of ground motions.The correlation between IMs and EDPs was explored.The results show that the piles present larger displacement and bending moment under NF-P ground motions compared to NF-NP and FF ground motions.None of the IMs have a high correlation with EDPs under NF-P ground motions,and these IMs are more applicable to FF ground motions.The correlation coefficients between EDPs and IMs under three types of ground motion were obtained,which will provide a valuable reference for the seismic design of PSWs.
基金supported by a geological survey project of the China Geological Survey (No.1212011140013, No.12120113009800)
文摘The Wenchuan earthquake has altered the crustal motion characteristics in the eastern margin of the Tibetan Plateau and adjacent regions.Using discontinuous GPS survey data for 2008–2012, the velocity field for the Eurasia reference framework has been obtained, and the general trend of contemporary crustal motion after the occurrence of the Wenchuan earthquake has been studied.In addition, using the velocity field, the block movement velocity has been estimated by least-squares fitting.Furthermore, the properties and displacement rates of main faults have been obtained from the differences in velocity vectors of the blocks on both sides of the faults.The results reveal that there are no obvious changes in the general characteristics of crustal motion in this area after the Wenchuan earthquake.The earthquake mainly changed the rate of the movement of the Chuan-Qing block and caused variation in the movement direction of the South China block.The effect of the earthquake on faults is mainly reflected in variations in fault displacement velocity; there is no fundamental change in the properties of fault activity.The displacement rates of the Xianshuihe fault decreased by 3–4 mm/a, the Longmenshan fault increased by 9–10 mm/a, and the northern segment of the Anninghe fault increased by approximately 9 mm/a.Furthermore, the displacement rates of the Minjiang, Xueshan, Huya, Longquanshan, and Xinjin faults increased by 2–3 mm/a.This implies that the effects of the Wenchuan earthquake on crustal movement can mainly be observed in the Chuan-Qing, South China, and N-Chuan-Dian blocks and their internal faults, as well as the Xianshuihe and Longmenshan faults and the northern section of the Anninghe fault.The reason for this is that the Wenchuan earthquake disturbed the kinematic and dynamic balance in the region.
基金Supported by University Research Project GrantNo. PIACERI Found–NATURE-OA-2020-2022。
文摘Technological development of motion and posture analyses is rapidly progressing,especially in rehabilitation settings and sport biomechanics.Consequently,clear discrimination among different measurement systems is required to diversify their use as needed.This review aims to resume the currently used motion and posture analysis systems,clarify and suggest the appropriate approaches suitable for specific cases or contexts.The currently gold standard systems of motion analysis,widely used in clinical settings,present several limitations related to marker placement or long procedure time.Fully automated and markerless systems are overcoming these drawbacks for conducting biomechanical studies,especially outside laboratories.Similarly,new posture analysis techniques are emerging,often driven by the need for fast and non-invasive methods to obtain high-precision results.These new technologies have also become effective for children or adolescents with non-specific back pain and postural insufficiencies.The evolutions of these methods aim to standardize measurements and provide manageable tools in clinical practice for the early diagnosis of musculoskeletal pathologies and to monitor daily improvements of each patient.Herein,these devices and their uses are described,providing researchers,clinicians,orthopedics,physical therapists,and sports coaches an effective guide to use new technologies in their practice as instruments of diagnosis,therapy,and prevention.
基金Project(2011CB013605)supported by the National Basic Research Development Program of China(973 Program)Projects(51178071,51008041)supported by the National Natural Science Foundation of ChinaProject(NCET-12-0751)supported by the New Century Excellent Talents Program in University of Ministry of Education of China
文摘In order to study the differences in vertical component between onshore and offshore motions,the vertical-to-horizontal peak ground acceleration ratio(V/H PGA ratio) and vertical-to-horizontal response spectral ratio(V/H) were investigated using the ground motion recordings from the K-NET network and the seafloor earthquake measuring system(SEMS).The results indicate that the vertical component of offshore motions is lower than that of onshore motions.The V/H PGA ratio of acceleration time histories at offshore stations is about 50%of the ratio at onshore stations.The V/H for offshore ground motions is lower than that for onshore motions,especially for periods less than 0.8 s.Furthermore,based on the results in statistical analysis for offshore recordings in the K-NET,the simplified V/H design equations for offshore motions in minor and moderate earthquakes are proposed for seismic analysis of offshore structures.
文摘Inertial measurement unit (IMU) is a standard motion sensor in modern airborne SAR systems. But how to remove its systematic error is a difficult problem, which impacts the improvement of resolution in azimuth. The technique of motion compensation presented in this paper, uses the GPS as a reference system to estimate and correct the systematic error of the IMU on the concept of linear unbiased minimum variance (LUMV). This new and effective method achieves very accurate position measurement (both high and low frequency) of the APC in not only short but also long terms, so that it can satisfy the requirement of high resolution airborne SAR. In the last section of the paper, some experimental simulations from raw data are given.