Based on the building of a theoretical model for the large eddy structure, the nonlinear effect of the local rough wall on the large eddy structure in the boundary layer is studied by direct numerical simulation. Nume...Based on the building of a theoretical model for the large eddy structure, the nonlinear effect of the local rough wall on the large eddy structure in the boundary layer is studied by direct numerical simulation. Numerical results show that factors of the local rough feature, the distributing structure and the intensity, etc. play an important role in the evolution of the large eddy structure in the boundary layer.展开更多
An eigen-function expansion method based on a new orthogonal inner product is proposed by Sahoo et al. (2000) for the study of the hydroelastic response of mat-type VLFS in head seas. However, their main emphasis is o...An eigen-function expansion method based on a new orthogonal inner product is proposed by Sahoo et al. (2000) for the study of the hydroelastic response of mat-type VLFS in head seas. However, their main emphasis is on the effect of edge conditions and they assume that the plate is of a semi-infinite length. In reality, the plate is of finite length. For consideration of the finite length effect, the reflection and transmission from the other end must be considered. The effect of this reflection and transmission on the hydroelastic response of VLFS is of interest for practical application. Furthermore, the physical meaning of the new inner product was not given in their paper. In this paper, it is shown that the new inner product can he derived from the governing equation and the bottom boundary conditions. Then the same eigen-function expansion method is adopted for the study of the hydroelastic response of an elastic plate of finite length in surface waves. Detailed comparisons are made between the present finite length model and the semi-infinite model and between the present model predictions and the experimental results. It is found that that the finite length effect is significant and the accuracy of present model is higher than the semi-infinite model. Furthermore, a new phenomenon, which is not mentioned in Sahoo et al. (2000), is found. Taht is, for larger L/h ratios, the reflection and transmission coefficients will oscillate with the non-dimensional parameter k(0) h. Further study is needed for full understanding of this phenomenon.展开更多
基金the National Natural Science Foundation of China(10672052)the Natural Science Foundation of Jiangsu Province(BK2007178)~~
文摘Based on the building of a theoretical model for the large eddy structure, the nonlinear effect of the local rough wall on the large eddy structure in the boundary layer is studied by direct numerical simulation. Numerical results show that factors of the local rough feature, the distributing structure and the intensity, etc. play an important role in the evolution of the large eddy structure in the boundary layer.
基金The project was supported by the national Natural Science Foundation of China(Grant No.50039010)the Science and Technology Development Foundation of Shanghai Municipal Government(00XD14015)
文摘An eigen-function expansion method based on a new orthogonal inner product is proposed by Sahoo et al. (2000) for the study of the hydroelastic response of mat-type VLFS in head seas. However, their main emphasis is on the effect of edge conditions and they assume that the plate is of a semi-infinite length. In reality, the plate is of finite length. For consideration of the finite length effect, the reflection and transmission from the other end must be considered. The effect of this reflection and transmission on the hydroelastic response of VLFS is of interest for practical application. Furthermore, the physical meaning of the new inner product was not given in their paper. In this paper, it is shown that the new inner product can he derived from the governing equation and the bottom boundary conditions. Then the same eigen-function expansion method is adopted for the study of the hydroelastic response of an elastic plate of finite length in surface waves. Detailed comparisons are made between the present finite length model and the semi-infinite model and between the present model predictions and the experimental results. It is found that that the finite length effect is significant and the accuracy of present model is higher than the semi-infinite model. Furthermore, a new phenomenon, which is not mentioned in Sahoo et al. (2000), is found. Taht is, for larger L/h ratios, the reflection and transmission coefficients will oscillate with the non-dimensional parameter k(0) h. Further study is needed for full understanding of this phenomenon.