Microglia,the primary immune cells within the brain,have gained recognition as a promising therapeutic target for managing neurodegenerative diseases within the central nervous system,including Parkinson’s disease.Na...Microglia,the primary immune cells within the brain,have gained recognition as a promising therapeutic target for managing neurodegenerative diseases within the central nervous system,including Parkinson’s disease.Nanoscale perfluorocarbon droplets have been reported to not only possess a high oxygen-carrying capacity,but also exhibit remarkable anti-inflammatory properties.However,the role of perfluoropentane in microglia-mediated central inflammatory reactions remains poorly understood.In this study,we developed perfluoropentane-based oxygen-loaded nanodroplets(PFP-OLNDs)and found that pretreatment with these droplets suppressed the lipopolysaccharide-induced activation of M1-type microglia in vitro and in vivo,and suppressed microglial activation in a mouse model of Parkinson’s disease.Microglial suppression led to a reduction in the inflammatory response,oxidative stress,and cell migration capacity in vitro.Consequently,the neurotoxic effects were mitigated,which alleviated neuronal degeneration.Additionally,ultrahigh-performance liquid chromatography–tandem mass spectrometry showed that the anti-inflammatory effects of PFP-OLNDs mainly resulted from the modulation of microglial metabolic reprogramming.We further showed that PFP-OLNDs regulated microglial metabolic reprogramming through the AKT-mTOR-HIF-1αpathway.Collectively,our findings suggest that the novel PFP-OLNDs constructed in this study alleviate microglia-mediated central inflammatory reactions through metabolic reprogramming.展开更多
BACKGROUND To assess the effectiveness of Shugan Jieyu capsules on peripheral blood miR-124,miR-132,and brain-derived neurotrophic factor(BDNF)levels in patients with mild to moderate depression following coronary art...BACKGROUND To assess the effectiveness of Shugan Jieyu capsules on peripheral blood miR-124,miR-132,and brain-derived neurotrophic factor(BDNF)levels in patients with mild to moderate depression following coronary artery intervention[percuta-neous coronary intervention(PCI)]for coronary heart disease.Patients with mild-to-moderate depression of the liver-qi stagnation type after PCI for coronary heart disease at the 305th Hospital of the People’s Liberation Army were enrolled from June 2022 to November 2023 and randomly assigned to two groups:Experimental(treated with Shugan Jieyu capsules)and control(tr-eated with escitalopram oxalate tablets).This study compared the antidepressant effects of these treatments using 17-item Hamilton Rating Scale for Depression(HAMD-17)scores,metabolic equivalents,low-density lipoprotein cholesterol,BDNF,high-sensitivity C-reactive protein levels,miR-124 and miR-132 levels,distribution of immune-related lymphocyte subsets,and traditional Chinese me-dicine syndrome scores before and after 6 weeks of treatment.RESULTS No significant difference was observed in any index between the two groups before treatment(P>0.05).After treatment,the total efficacy rates were 93.33%and 90.00%in the experimental and control groups,respectively.Experimental group had significantly lower scores for the main and secondary syndromes compared to the control group(P<0.05).No significant difference was observed in the metabolic equivalents between the two groups be-fore and after treatment(P>0.05).The levels of low-density lipoprotein cholesterol,high-sensitivity C-reactive pro-tein,and miR-132 were significantly lower,whereas those of miR-124,BDNF,CD3+T lymphocytes,CD3+CD4+T helper lymphocytes,and CD3+CD4+/CD3+CD8+cells were significantly higher in the experimental group com-pared to the control group(P<0.05).The incidence of adverse reactions during experimental group was signi-ficantly lower than that in control group(P<0.05).CONCLUSION Shugan Jieyu capsules have good efficacy in patients with mild-to-moderate depression after PCI,and its me-chanism may contribute to the regulation of miR-124,miR-132,BDNF levels,and lymphoid immune cells.展开更多
Micro- and nano-plastics (MNPs) are tiny plastic particles resulting from plastic product degradation. Soil MNPs have been identified as potential influential factors affecting various soil properties and crop biomass...Micro- and nano-plastics (MNPs) are tiny plastic particles resulting from plastic product degradation. Soil MNPs have been identified as potential influential factors affecting various soil properties and crop biomass productivity. This mini-review provides a synthesis of recent findings concerning their effects on soil physicochemical properties, microorganisms, organic carbon content, soil nutrients, greenhouse gas emissions, soil fauna, and their impacts on plant ecophysiology, growth, and production. The results indicate that MNPs may markedly impede soil aggregation ability, increase porosity, decrease soil bulk density, enhance water retention capacity, influence soil pH and electrical conductivity, and escalate soil water evaporation. Exposure to MNPs may predominantly induce changes in soil microbial composition, reducing the diversity and complexity of microbial communities and microbial activity while enhancing soil organic carbon stability, influencing soil nutrient dynamics, and stimulating organic carbon decomposition and denitrification processes, leading to elevated soil respiration and methane emissions, and potentially decreasing soil nitrous oxide emission. Additionally, MNPs may adversely affect soil fauna, diminish seed germination rates, promote plant root growth, yet impair plant photosynthetic efficacy and biomass productivity. These findings contribute to a better understanding of the impacts and mechanistic foundations of MNPs. Future research avenues are suggested to further explore the impacts and economic implications.展开更多
Efficient synthesis of transition metal hydroxides on conductive substrate is essential for enhancing their merits in industrialization of energy storage field.However,most of the synthetic routes at present mainly re...Efficient synthesis of transition metal hydroxides on conductive substrate is essential for enhancing their merits in industrialization of energy storage field.However,most of the synthetic routes at present mainly rely on traditional bottom-up method,which involves tedious steps,time-consuming treatments,or additional alkaline media,and is unfavorable for high-efficiency production.Herein,we present a facile,ultrafast and general avenue to synthesize transition metal hydroxides on carbon substrate within 13 s by Joule-heating method.With high reaction kinetics caused by the instantaneous high temperature,seven kinds of transition metal-layered hydroxides(TM-LDHs)are formed on carbon cloth.Therein,the fastest synthesis rate reaches~0.46 cm^(2)s^(-1).Density functional theory calculations further demonstrate the nucleation energy barriers and potential mechanism for the formation of metal-based hydroxides on carbon substrates.This efficient approach avoids the use of extra agents,multiple steps,and long production time and endows the LDHs@carbon cloth with outstanding flexibility and machinability,showing practical advantages in both common and micro-zinc ion-based energy storage devices.To prove its utility,as a cathode in rechargeable aqueous alkaline Zn(micro-)battery,the NiCo LDH@carbon cloth exhibits a high energy density,superior to most transition metal LDH materials reported so far.展开更多
Although many organic molecules found commonly in the atmosphere are known to be surface-active in aqueous solutions, their effects on the mechanisms underlying haze formation remain unclear. In this paper, based on a...Although many organic molecules found commonly in the atmosphere are known to be surface-active in aqueous solutions, their effects on the mechanisms underlying haze formation remain unclear. In this paper, based on a simple thermodynamic analysis, we report that the adsorption of amphiphilic organics alone not only lowers the surface tension,but also unexpectedly stabilizes nanodroplets of specific size under water vapor supersaturation. Then we determine how various factors, including relative humidity, water activity effect due to dissolution of inorganic components as well as surface tension effect due to surface adsorption of organic components, cooperatively induce the stability of nanodroplets.The nanodroplet stability behaviors not captured in the current theory would change the formation mechanism of haze droplets, from the hygroscopic growth pathway to a nonclassical two-step nucleation pathway.展开更多
By conducting experimental analyses, including thermal pyrolysis, micro-/nano-CT, argon-ion polishing field emission scanning electron microscopy (FE-SEM), confocal laser scanning microscopy (CLSM), and two-dimensiona...By conducting experimental analyses, including thermal pyrolysis, micro-/nano-CT, argon-ion polishing field emission scanning electron microscopy (FE-SEM), confocal laser scanning microscopy (CLSM), and two-dimensional nuclear magnetic resonance (2D NMR), the Gulong shale oil in the Songliao Basin was investigated with respect to formation model, pore structure and accumulation mechanism. First, in the Gulong shale, there are a large number of pico-algae, nano-algae and dinoflagellates, which were formed in brackish water environment and constituted the hydrogen-rich oil source materials of shale. Second, most of the oil-generating materials of the Qingshankou Formation shale exist in the form of organo-clay complex. During organic matter thermal evolution, clay minerals had double effects of suppression and catalytic hydrogenation, which expanded shale oil window and increased light hydrocarbon yield. Third, the formation of storage space in the Gulong Shale was related to dissolution and hydrocarbon generation. With the diagenesis, micro-/nano-pores increased, pore diameter decreased and more bedding fractures appeared, which jointly gave rise to the unique reservoir with dual media (i.e. nano-scale pores and micro-scale bedding fractures) in the Gulong shale. Fourth, the micro-/nano-scale oil storage unit in the Gulong shale exhibits independent oil/gas occurrence phase, and shows that all-size pores contain oils, which occur in condensate state in micropores or in oil-gas two phase (or liquid) state in macropores/mesopores. The understanding about Gulong shale oil formation and accumulation mechanism has theoretical and practical significance for advancing continental shale oil exploration in China.展开更多
Lipid-coated perfluorocarbon nanodroplets(lp-NDs)hold great promise in bio-medicine as vehicles for drug delivery,molecular imaging and vaccine agents.However,their clinical utility is restricted by limited targeted a...Lipid-coated perfluorocarbon nanodroplets(lp-NDs)hold great promise in bio-medicine as vehicles for drug delivery,molecular imaging and vaccine agents.However,their clinical utility is restricted by limited targeted accumulation,attributed to the innate immune system(IIS),which acts as the initial defense mechanism in humans.This study aimed to optimize lp-ND formulations to mini-mize non-specific clearance by the IIS.Ginsenosides(Gs),the principal components of Panax ginseng,possessing complement inhibition ability,structural similarity to cholesterol,and comparable fat solubi-lity to phospholipids,were used as promising candidate IIS inhibitors.Two different types of ginsenoside-based Ip-NDs(Gs Ip-NDs)were created,and their efficacy in reducing IS recognition was examined.The Gs p-NDs were observed to inhibit the adsorption of C3 in the protein corona(PC)and the generation of SC5b-9.Adding Gs to Ip-NDs reduced complement adsorption and phagocytosis,resulting in a longer blood circulation time in vivo compared to lp-NDs that did not contain Gs.These results suggest that Gs can act as anti-complement and anti-phagocytosis adjuvants,potentially reducing non-specific clear-ance by the IS and improving lifespan.展开更多
Liquid metal(LM)and liquid metal alloys(LMs)possess unique physicochemical features,which have become emerging and functionalized materials that are attractive applicants in various fields.Herein,uniform LM nanodrople...Liquid metal(LM)and liquid metal alloys(LMs)possess unique physicochemical features,which have become emerging and functionalized materials that are attractive applicants in various fields.Herein,uniform LM nanodroplets armored by carbon dots(LMD@CDs)were prepared and exhibited high colloidal stability in various solvents,as well as water.After optimization,LMD@CDs can be applied as functional additives for the 3D/4D printing of hydrogel and cross-linked resin through digital light processing(DLP).The light absorption of LMD@CDs not only improved the printing accuracy,but also led to the cross-linking density differential during the post-curing process.Base on the cross-linking density differential of soft hydrogel and photothermal performance of the LM,the 3D printed objects can exhibit stimulus responses to both water and laser irradiation.Additionally,the CDs shell and LM core of LMD@CDs provide the printed objects interesting photoluminescence and electric conductivity capabilities,respectively.We deduce this versatile 3D/4D printing system would provide a new platform for the preparation of multi-functional and stimuli-responsive advance materials.展开更多
In the present work, osteoblast behavior on a hierarchical micro-/nano-structured titanium surface was investigated. A hi- erarchical hybrid micro-/nano-structured titanium surface topography was produced via Electrol...In the present work, osteoblast behavior on a hierarchical micro-/nano-structured titanium surface was investigated. A hi- erarchical hybrid micro-/nano-structured titanium surface topography was produced via Electrolytic Etching (EE). MG-63 cells were cultured on disks for 2 h to 7 days. The osteoblast response to the hierarchical hybrid micro-/nano-structured titanium surface was evaluated through the osteoblast cell morphology, attachment and proliferation. For comparison, MG-63 cells were also cultured on Sandblasted and Acid-etched (SEA) as well as Machined (M) surfaces respectively. The results show signifi- cant differences in the adhesion rates and proliferation levels of MG-63 cells on EE, SLA, and M surfaces. Both adhesion rate and proliferation level on EE surface are higher than those on SLA and M surfaces. Therefore, we may expect that, comparing with SLA and M surfaces, bone growth on EE surface could be accelerated and bone formation could be promoted at an early stage, which could be applied in the clinical practices for immediate and early-stage loadings.展开更多
In this paper,macro-and micro-properties of natural marine clay in two different and representative regions of China are investigated in detail.In addition to in-situ tests,soil samples are collected by use of Shelby ...In this paper,macro-and micro-properties of natural marine clay in two different and representative regions of China are investigated in detail.In addition to in-situ tests,soil samples are collected by use of Shelby tubes for laboratory examination in Shanghai and Zhuhai respectively,two coastal cities in China.In the laboratory tests,macro-properties such as consolidation characteristics and undrained shear strength are measured.Moreover,X-ray diffraction test,scanning electron microscope test,and mercury intrusion test are carried out for the investigation of their micro-properties including clay minerals and microstructure.The study shows that:(1)both clays are Holocene series formations,classified as either normal or underconsolidated soils.The initial gradient of the stress-strain curves shows their increase with increasing consolidation pressure;however,the Shanghai and the Zhuhai clays are both structural soils with the latter shown to be more structured than the former.As a result,the Zhuhai clay shows strain softening behavior at low confining pressures,but strain hardening at high pressures.In contrast,the Shanghai clay mainly manifests strain-hardening.(2)An activity ranges from 0.75 to 1.30 for the Shanghai marine clay and from 0.5 to 0.85 for the Zhuhai marine clay.The main clay mineral is illite in the Shanghai clay and kaolinite in the Zhuhai clay.The Zhuhai clay is mainly characterized by a flocculated structure,while the typical Shanghai clay shows a dispersed structure.The porous structure of the Shanghai clay is characterized mainly by large and medium-sized pores,while the Zhuhai clay porous structure is mainly featured by small and medium-sized pores.The differences in their macro-and micro-properties can be attributed to different sedimentation environments.展开更多
Versatile liquid manipulating surfaces combining patternable and controllable wettability have recently motivated considerable attention owing to their significant advantages in droplet-solid impacting behaviors,micro...Versatile liquid manipulating surfaces combining patternable and controllable wettability have recently motivated considerable attention owing to their significant advantages in droplet-solid impacting behaviors,microdroplet self-removal,and liquid–liquid interface reaction applications.However,developing a facile and efficient method to fabricate these versatile surfaces remains an enormous challenge.In this paper,a strategy for the fabrication of liquid manipulating surfaces with patternable and controllable wettability on Polyimide(PI)film based on femtosecond laser thermal accumulation engineering is proposed.Because of its controllable micro-/nanostructures and chemical composition through adjusting the local thermal accumulation,the wettability of PI film can be tuned from superhydrophilicity(~3.6°)to superhydrophobicity(~151.6°).Furthermore,three diverse surfaces with patternable and heterogeneous wettability were constructed and various applications were successfully realized,including water transport,droplet arrays,and liquid wells.This work may provide a facile strategy for achieving patternable and controllable wettability efficiently and developing multifunctional liquid steering surfaces.展开更多
Treatment of petroleum spills and organic solvent pollution in general is an important issue; several techniques are under development to remove oil from water. The use of absorbents is one of the most common techniqu...Treatment of petroleum spills and organic solvent pollution in general is an important issue; several techniques are under development to remove oil from water. The use of absorbents is one of the most common techniques to tackle this problem. These absorbents can be classified based on their characteristics of recyclability into irreversible and reversible ones. In this review, we discuss the application of several materials as oil absorbents, according to their classification and characteristics such as hydrophobicity, surface area and oil absorption capacity. Also, the fabrication methods for some materials are presented and analyzed.展开更多
Microand nano-sized SiC/fluoroelastomer (FKM) composites were prepared by a mechanical mixing method. These composites were first characterized by a rotorless rheometer. Then the effects of micro- and nano-sized SiC...Microand nano-sized SiC/fluoroelastomer (FKM) composites were prepared by a mechanical mixing method. These composites were first characterized by a rotorless rheometer. Then the effects of micro- and nano-sized SiC on hardness, static and dynamic mechanical properties of the composites were investigated. The increasing amount of the SiC filler increased the curing efficiency of the biphenyl curing system, which was evident from the rheometric properties of the resulting composites. The tensile properties of composite increased with the increasing of micro- and nano-sized SiC content. When the micro- and nano-sized SiC content was higher than 20 phr, the composites showed almost unchanged tensile properties. The increasing of the tensile property was mainly attributed to the well dispersed micro- and nano-sized SiC particles characterized by SEM images. Compared to pure FKM, the composites exhibited a higher glass transition temperature and lower tan peak value.展开更多
The microstructure of the prepared porous bioceramic material, including surface porosity and apparent contact area with the artificial mucus film are computed and analyzed. The surface micro-configurations of the p...The microstructure of the prepared porous bioceramic material, including surface porosity and apparent contact area with the artificial mucus film are computed and analyzed. The surface micro-configurations of the porous material before and after sliding on the mucus film are observed in 2 D and 3 D by digital microsco py, We describe how much mucus enters and stays within different pares, and how the porous material with rough/ porous surface contacts with the mucus film ( elastic surfucel gel ) . The presented results illustrate that the material with different porous structure can lead to different mucus suction, surface scraping and changes of contact area and condition during sliding, which will be active for high friction of robotic endoscope with the intestinal wall for intestinal locomotion.展开更多
We reveal the ultralow friction or superlubricity of water nanodroplets containing cations and anions on graphene substrates at high ion concentration by molecular dynamics simulations.When the ion concentration is hi...We reveal the ultralow friction or superlubricity of water nanodroplets containing cations and anions on graphene substrates at high ion concentration by molecular dynamics simulations.When the ion concentration is higher than 7 wt.%and the nanodroplet diameter is larger than 10 nm,the friction coefficients of water nanodroplets are lower than 10−2,and can decrease to the order of 10−3 with increasing the ion concentration further.At a certain ion concentration,the optimal nanodroplet diameter of 17–20 nm exists at which the friction coefficient is the lowest.The ultralow friction behaviors of water nanodroplets containing cations and anions are mainly attributed to the opposite variation trends between the interfacial adhesion energy and surface energy of water nanodroplet with ion concentration,and the interfacial hydrophobicity sustained by high ion concentration.These results unveil the essential role of ions in achieving the superlubricity of water nanodroplets.展开更多
Dynamic manipulation of enzymatic activity is a challenging task for applications in chemical and pharmaceutical industries due to the difficult modification and variable conformation of various enzymes.Here, we repor...Dynamic manipulation of enzymatic activity is a challenging task for applications in chemical and pharmaceutical industries due to the difficult modification and variable conformation of various enzymes.Here, we report a new strategy for reversible dynamic modulation of enzymatic activity by near-infrared light-induced photothermal conversion based on polyphenol-functionalized liquid metal nanodroplets(LM). The metal-phenolic nanocoating not only provides colloidal stability of LM nanodroplets but also generates nanointerfaces for the assembly of various enzymes on the LM nanodroplets. Upon near infrared(NIR) irradiation, the localized microenvironmental heating through photothermal effect of the LM nanodroplets allows tailoring the enzymatic activity without affecting the bulk temperature. A library of functional enzymes, including proteinase K, glucoamylase, glucose oxidase, and Bst DNA polymerase, is integrated to perform a reversible control and enhanced activities even after five times of cycles, demonstrating great potential in bacterial fermentation, bacteriostasis, and target gene amplification.展开更多
基金supported by the National Natural Science Foundation of China,No.82101327(to YY)President Foundation of Nanfang Hospital,Southern Medical University,No.2020A001(to WL)+1 种基金Guangdong Basic and Applied Basic Research Foundation,Nos.2019A1515110150,2022A1515012362(both to YY)Guangzhou Science and Technology Project,No.202201020111(to YY).
文摘Microglia,the primary immune cells within the brain,have gained recognition as a promising therapeutic target for managing neurodegenerative diseases within the central nervous system,including Parkinson’s disease.Nanoscale perfluorocarbon droplets have been reported to not only possess a high oxygen-carrying capacity,but also exhibit remarkable anti-inflammatory properties.However,the role of perfluoropentane in microglia-mediated central inflammatory reactions remains poorly understood.In this study,we developed perfluoropentane-based oxygen-loaded nanodroplets(PFP-OLNDs)and found that pretreatment with these droplets suppressed the lipopolysaccharide-induced activation of M1-type microglia in vitro and in vivo,and suppressed microglial activation in a mouse model of Parkinson’s disease.Microglial suppression led to a reduction in the inflammatory response,oxidative stress,and cell migration capacity in vitro.Consequently,the neurotoxic effects were mitigated,which alleviated neuronal degeneration.Additionally,ultrahigh-performance liquid chromatography–tandem mass spectrometry showed that the anti-inflammatory effects of PFP-OLNDs mainly resulted from the modulation of microglial metabolic reprogramming.We further showed that PFP-OLNDs regulated microglial metabolic reprogramming through the AKT-mTOR-HIF-1αpathway.Collectively,our findings suggest that the novel PFP-OLNDs constructed in this study alleviate microglia-mediated central inflammatory reactions through metabolic reprogramming.
基金the 305 Hospital Independent Scientific Research Fund,2024,No.24ZZJJLW-022.
文摘BACKGROUND To assess the effectiveness of Shugan Jieyu capsules on peripheral blood miR-124,miR-132,and brain-derived neurotrophic factor(BDNF)levels in patients with mild to moderate depression following coronary artery intervention[percuta-neous coronary intervention(PCI)]for coronary heart disease.Patients with mild-to-moderate depression of the liver-qi stagnation type after PCI for coronary heart disease at the 305th Hospital of the People’s Liberation Army were enrolled from June 2022 to November 2023 and randomly assigned to two groups:Experimental(treated with Shugan Jieyu capsules)and control(tr-eated with escitalopram oxalate tablets).This study compared the antidepressant effects of these treatments using 17-item Hamilton Rating Scale for Depression(HAMD-17)scores,metabolic equivalents,low-density lipoprotein cholesterol,BDNF,high-sensitivity C-reactive protein levels,miR-124 and miR-132 levels,distribution of immune-related lymphocyte subsets,and traditional Chinese me-dicine syndrome scores before and after 6 weeks of treatment.RESULTS No significant difference was observed in any index between the two groups before treatment(P>0.05).After treatment,the total efficacy rates were 93.33%and 90.00%in the experimental and control groups,respectively.Experimental group had significantly lower scores for the main and secondary syndromes compared to the control group(P<0.05).No significant difference was observed in the metabolic equivalents between the two groups be-fore and after treatment(P>0.05).The levels of low-density lipoprotein cholesterol,high-sensitivity C-reactive pro-tein,and miR-132 were significantly lower,whereas those of miR-124,BDNF,CD3+T lymphocytes,CD3+CD4+T helper lymphocytes,and CD3+CD4+/CD3+CD8+cells were significantly higher in the experimental group com-pared to the control group(P<0.05).The incidence of adverse reactions during experimental group was signi-ficantly lower than that in control group(P<0.05).CONCLUSION Shugan Jieyu capsules have good efficacy in patients with mild-to-moderate depression after PCI,and its me-chanism may contribute to the regulation of miR-124,miR-132,BDNF levels,and lymphoid immune cells.
文摘Micro- and nano-plastics (MNPs) are tiny plastic particles resulting from plastic product degradation. Soil MNPs have been identified as potential influential factors affecting various soil properties and crop biomass productivity. This mini-review provides a synthesis of recent findings concerning their effects on soil physicochemical properties, microorganisms, organic carbon content, soil nutrients, greenhouse gas emissions, soil fauna, and their impacts on plant ecophysiology, growth, and production. The results indicate that MNPs may markedly impede soil aggregation ability, increase porosity, decrease soil bulk density, enhance water retention capacity, influence soil pH and electrical conductivity, and escalate soil water evaporation. Exposure to MNPs may predominantly induce changes in soil microbial composition, reducing the diversity and complexity of microbial communities and microbial activity while enhancing soil organic carbon stability, influencing soil nutrient dynamics, and stimulating organic carbon decomposition and denitrification processes, leading to elevated soil respiration and methane emissions, and potentially decreasing soil nitrous oxide emission. Additionally, MNPs may adversely affect soil fauna, diminish seed germination rates, promote plant root growth, yet impair plant photosynthetic efficacy and biomass productivity. These findings contribute to a better understanding of the impacts and mechanistic foundations of MNPs. Future research avenues are suggested to further explore the impacts and economic implications.
基金the NSFC(22075019)National Key R&D Program of China(2017YFB1104300)。
文摘Efficient synthesis of transition metal hydroxides on conductive substrate is essential for enhancing their merits in industrialization of energy storage field.However,most of the synthetic routes at present mainly rely on traditional bottom-up method,which involves tedious steps,time-consuming treatments,or additional alkaline media,and is unfavorable for high-efficiency production.Herein,we present a facile,ultrafast and general avenue to synthesize transition metal hydroxides on carbon substrate within 13 s by Joule-heating method.With high reaction kinetics caused by the instantaneous high temperature,seven kinds of transition metal-layered hydroxides(TM-LDHs)are formed on carbon cloth.Therein,the fastest synthesis rate reaches~0.46 cm^(2)s^(-1).Density functional theory calculations further demonstrate the nucleation energy barriers and potential mechanism for the formation of metal-based hydroxides on carbon substrates.This efficient approach avoids the use of extra agents,multiple steps,and long production time and endows the LDHs@carbon cloth with outstanding flexibility and machinability,showing practical advantages in both common and micro-zinc ion-based energy storage devices.To prove its utility,as a cathode in rechargeable aqueous alkaline Zn(micro-)battery,the NiCo LDH@carbon cloth exhibits a high energy density,superior to most transition metal LDH materials reported so far.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21978007)。
文摘Although many organic molecules found commonly in the atmosphere are known to be surface-active in aqueous solutions, their effects on the mechanisms underlying haze formation remain unclear. In this paper, based on a simple thermodynamic analysis, we report that the adsorption of amphiphilic organics alone not only lowers the surface tension,but also unexpectedly stabilizes nanodroplets of specific size under water vapor supersaturation. Then we determine how various factors, including relative humidity, water activity effect due to dissolution of inorganic components as well as surface tension effect due to surface adsorption of organic components, cooperatively induce the stability of nanodroplets.The nanodroplet stability behaviors not captured in the current theory would change the formation mechanism of haze droplets, from the hygroscopic growth pathway to a nonclassical two-step nucleation pathway.
基金Supported by the Central Guiding Local Science and Technology Development Special Project(ZY20B13)。
文摘By conducting experimental analyses, including thermal pyrolysis, micro-/nano-CT, argon-ion polishing field emission scanning electron microscopy (FE-SEM), confocal laser scanning microscopy (CLSM), and two-dimensional nuclear magnetic resonance (2D NMR), the Gulong shale oil in the Songliao Basin was investigated with respect to formation model, pore structure and accumulation mechanism. First, in the Gulong shale, there are a large number of pico-algae, nano-algae and dinoflagellates, which were formed in brackish water environment and constituted the hydrogen-rich oil source materials of shale. Second, most of the oil-generating materials of the Qingshankou Formation shale exist in the form of organo-clay complex. During organic matter thermal evolution, clay minerals had double effects of suppression and catalytic hydrogenation, which expanded shale oil window and increased light hydrocarbon yield. Third, the formation of storage space in the Gulong Shale was related to dissolution and hydrocarbon generation. With the diagenesis, micro-/nano-pores increased, pore diameter decreased and more bedding fractures appeared, which jointly gave rise to the unique reservoir with dual media (i.e. nano-scale pores and micro-scale bedding fractures) in the Gulong shale. Fourth, the micro-/nano-scale oil storage unit in the Gulong shale exhibits independent oil/gas occurrence phase, and shows that all-size pores contain oils, which occur in condensate state in micropores or in oil-gas two phase (or liquid) state in macropores/mesopores. The understanding about Gulong shale oil formation and accumulation mechanism has theoretical and practical significance for advancing continental shale oil exploration in China.
基金This work was supported by the National Natural Science Foundation for Young Scholars of China(82302199)the National Science Foundation of China(82371977,82071940)the Medical Research Project of Chengdu Municipal Health Commission(2021017,2022338,China).
文摘Lipid-coated perfluorocarbon nanodroplets(lp-NDs)hold great promise in bio-medicine as vehicles for drug delivery,molecular imaging and vaccine agents.However,their clinical utility is restricted by limited targeted accumulation,attributed to the innate immune system(IIS),which acts as the initial defense mechanism in humans.This study aimed to optimize lp-ND formulations to mini-mize non-specific clearance by the IIS.Ginsenosides(Gs),the principal components of Panax ginseng,possessing complement inhibition ability,structural similarity to cholesterol,and comparable fat solubi-lity to phospholipids,were used as promising candidate IIS inhibitors.Two different types of ginsenoside-based Ip-NDs(Gs Ip-NDs)were created,and their efficacy in reducing IS recognition was examined.The Gs p-NDs were observed to inhibit the adsorption of C3 in the protein corona(PC)and the generation of SC5b-9.Adding Gs to Ip-NDs reduced complement adsorption and phagocytosis,resulting in a longer blood circulation time in vivo compared to lp-NDs that did not contain Gs.These results suggest that Gs can act as anti-complement and anti-phagocytosis adjuvants,potentially reducing non-specific clear-ance by the IS and improving lifespan.
基金The financial support from the National Natural Science Foundation of China(Grant No.51973201,U1804128,to X.P.Grant No.52173209,to Y.H.)+4 种基金the 111 Project(D18023,to X.P.)the National Science Foundation for Young Scientists of China(Grant No.22105179,to G.S.)the National Key R&D Program of China(2017YFB0307600,to M.L)China Postdoctoral Science Foundation(2020M682317,to X.Z)Scientific&technological research projects in Henan Province(222102520009,to X.Q.)
文摘Liquid metal(LM)and liquid metal alloys(LMs)possess unique physicochemical features,which have become emerging and functionalized materials that are attractive applicants in various fields.Herein,uniform LM nanodroplets armored by carbon dots(LMD@CDs)were prepared and exhibited high colloidal stability in various solvents,as well as water.After optimization,LMD@CDs can be applied as functional additives for the 3D/4D printing of hydrogel and cross-linked resin through digital light processing(DLP).The light absorption of LMD@CDs not only improved the printing accuracy,but also led to the cross-linking density differential during the post-curing process.Base on the cross-linking density differential of soft hydrogel and photothermal performance of the LM,the 3D printed objects can exhibit stimulus responses to both water and laser irradiation.Additionally,the CDs shell and LM core of LMD@CDs provide the printed objects interesting photoluminescence and electric conductivity capabilities,respectively.We deduce this versatile 3D/4D printing system would provide a new platform for the preparation of multi-functional and stimuli-responsive advance materials.
文摘In the present work, osteoblast behavior on a hierarchical micro-/nano-structured titanium surface was investigated. A hi- erarchical hybrid micro-/nano-structured titanium surface topography was produced via Electrolytic Etching (EE). MG-63 cells were cultured on disks for 2 h to 7 days. The osteoblast response to the hierarchical hybrid micro-/nano-structured titanium surface was evaluated through the osteoblast cell morphology, attachment and proliferation. For comparison, MG-63 cells were also cultured on Sandblasted and Acid-etched (SEA) as well as Machined (M) surfaces respectively. The results show signifi- cant differences in the adhesion rates and proliferation levels of MG-63 cells on EE, SLA, and M surfaces. Both adhesion rate and proliferation level on EE surface are higher than those on SLA and M surfaces. Therefore, we may expect that, comparing with SLA and M surfaces, bone growth on EE surface could be accelerated and bone formation could be promoted at an early stage, which could be applied in the clinical practices for immediate and early-stage loadings.
基金supported bythe National Natural Science Foundation of China(Grant No.50679057)the National High Technology Research and Development Program of China(863 Program,Grnat No.2006AA11Z102)+1 种基金the Shanghai Pujiang Program(Grant No.06PJ14088)the Zhuhai city Science Technology Program(Grant No.PA200310064)
文摘In this paper,macro-and micro-properties of natural marine clay in two different and representative regions of China are investigated in detail.In addition to in-situ tests,soil samples are collected by use of Shelby tubes for laboratory examination in Shanghai and Zhuhai respectively,two coastal cities in China.In the laboratory tests,macro-properties such as consolidation characteristics and undrained shear strength are measured.Moreover,X-ray diffraction test,scanning electron microscope test,and mercury intrusion test are carried out for the investigation of their micro-properties including clay minerals and microstructure.The study shows that:(1)both clays are Holocene series formations,classified as either normal or underconsolidated soils.The initial gradient of the stress-strain curves shows their increase with increasing consolidation pressure;however,the Shanghai and the Zhuhai clays are both structural soils with the latter shown to be more structured than the former.As a result,the Zhuhai clay shows strain softening behavior at low confining pressures,but strain hardening at high pressures.In contrast,the Shanghai clay mainly manifests strain-hardening.(2)An activity ranges from 0.75 to 1.30 for the Shanghai marine clay and from 0.5 to 0.85 for the Zhuhai marine clay.The main clay mineral is illite in the Shanghai clay and kaolinite in the Zhuhai clay.The Zhuhai clay is mainly characterized by a flocculated structure,while the typical Shanghai clay shows a dispersed structure.The porous structure of the Shanghai clay is characterized mainly by large and medium-sized pores,while the Zhuhai clay porous structure is mainly featured by small and medium-sized pores.The differences in their macro-and micro-properties can be attributed to different sedimentation environments.
基金This research is supported by National Natural Science Foundation of China(Nos.52075557,51805553)Natural Science Foundation of Hunan Province(No.2021JJ20067)+1 种基金The Science and Technology Innovation Program of Hunan Province(No.2021RC3011)Open access funding provided by Shanghai Jiao Tong University
文摘Versatile liquid manipulating surfaces combining patternable and controllable wettability have recently motivated considerable attention owing to their significant advantages in droplet-solid impacting behaviors,microdroplet self-removal,and liquid–liquid interface reaction applications.However,developing a facile and efficient method to fabricate these versatile surfaces remains an enormous challenge.In this paper,a strategy for the fabrication of liquid manipulating surfaces with patternable and controllable wettability on Polyimide(PI)film based on femtosecond laser thermal accumulation engineering is proposed.Because of its controllable micro-/nanostructures and chemical composition through adjusting the local thermal accumulation,the wettability of PI film can be tuned from superhydrophilicity(~3.6°)to superhydrophobicity(~151.6°).Furthermore,three diverse surfaces with patternable and heterogeneous wettability were constructed and various applications were successfully realized,including water transport,droplet arrays,and liquid wells.This work may provide a facile strategy for achieving patternable and controllable wettability efficiently and developing multifunctional liquid steering surfaces.
基金the Universidad Autónoma de Nuevo León (Monterrey city, Mexico) for financial support (Project Paicyt-2015)
文摘Treatment of petroleum spills and organic solvent pollution in general is an important issue; several techniques are under development to remove oil from water. The use of absorbents is one of the most common techniques to tackle this problem. These absorbents can be classified based on their characteristics of recyclability into irreversible and reversible ones. In this review, we discuss the application of several materials as oil absorbents, according to their classification and characteristics such as hydrophobicity, surface area and oil absorption capacity. Also, the fabrication methods for some materials are presented and analyzed.
基金Funded by the National Natural Science Foundation of China(No.50979016)
文摘Microand nano-sized SiC/fluoroelastomer (FKM) composites were prepared by a mechanical mixing method. These composites were first characterized by a rotorless rheometer. Then the effects of micro- and nano-sized SiC on hardness, static and dynamic mechanical properties of the composites were investigated. The increasing amount of the SiC filler increased the curing efficiency of the biphenyl curing system, which was evident from the rheometric properties of the resulting composites. The tensile properties of composite increased with the increasing of micro- and nano-sized SiC content. When the micro- and nano-sized SiC content was higher than 20 phr, the composites showed almost unchanged tensile properties. The increasing of the tensile property was mainly attributed to the well dispersed micro- and nano-sized SiC particles characterized by SEM images. Compared to pure FKM, the composites exhibited a higher glass transition temperature and lower tan peak value.
文摘The microstructure of the prepared porous bioceramic material, including surface porosity and apparent contact area with the artificial mucus film are computed and analyzed. The surface micro-configurations of the porous material before and after sliding on the mucus film are observed in 2 D and 3 D by digital microsco py, We describe how much mucus enters and stays within different pares, and how the porous material with rough/ porous surface contacts with the mucus film ( elastic surfucel gel ) . The presented results illustrate that the material with different porous structure can lead to different mucus suction, surface scraping and changes of contact area and condition during sliding, which will be active for high friction of robotic endoscope with the intestinal wall for intestinal locomotion.
基金This work is supported by the National Natural Science Foundation of China(Nos.11972186,11890674,and 51921003)the Western Light Project of the Chinese Academy of Sciences(CAS)(No.xbzg-zdsys-202118)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘We reveal the ultralow friction or superlubricity of water nanodroplets containing cations and anions on graphene substrates at high ion concentration by molecular dynamics simulations.When the ion concentration is higher than 7 wt.%and the nanodroplet diameter is larger than 10 nm,the friction coefficients of water nanodroplets are lower than 10−2,and can decrease to the order of 10−3 with increasing the ion concentration further.At a certain ion concentration,the optimal nanodroplet diameter of 17–20 nm exists at which the friction coefficient is the lowest.The ultralow friction behaviors of water nanodroplets containing cations and anions are mainly attributed to the opposite variation trends between the interfacial adhesion energy and surface energy of water nanodroplet with ion concentration,and the interfacial hydrophobicity sustained by high ion concentration.These results unveil the essential role of ions in achieving the superlubricity of water nanodroplets.
基金financial support from the National Talents Program, National Natural Science Foundation of China (Nos. 22178233, 22108181)Talents Program of Sichuan Province, Double First-Class University Plan of Sichuan University, State Key Laboratory of Polymer Materials Engineering (No. sklpme 2020-03-01)the Sichuan Province Postdoctoral Special Funding。
文摘Dynamic manipulation of enzymatic activity is a challenging task for applications in chemical and pharmaceutical industries due to the difficult modification and variable conformation of various enzymes.Here, we report a new strategy for reversible dynamic modulation of enzymatic activity by near-infrared light-induced photothermal conversion based on polyphenol-functionalized liquid metal nanodroplets(LM). The metal-phenolic nanocoating not only provides colloidal stability of LM nanodroplets but also generates nanointerfaces for the assembly of various enzymes on the LM nanodroplets. Upon near infrared(NIR) irradiation, the localized microenvironmental heating through photothermal effect of the LM nanodroplets allows tailoring the enzymatic activity without affecting the bulk temperature. A library of functional enzymes, including proteinase K, glucoamylase, glucose oxidase, and Bst DNA polymerase, is integrated to perform a reversible control and enhanced activities even after five times of cycles, demonstrating great potential in bacterial fermentation, bacteriostasis, and target gene amplification.