Introduction Scaling down to the micro- and nanoscale is a strong current trend in the development of science and technology. 'Small is energy efficient and cost effective' has long been for the motto of the semico...Introduction Scaling down to the micro- and nanoscale is a strong current trend in the development of science and technology. 'Small is energy efficient and cost effective' has long been for the motto of the semiconductor industry, including micro- and nanoelectronics, micro-electro-mechanical systems (MEMS) and nanoelectro-mechanical systems (NEMS).展开更多
Classical molecular dynamics(MD)simulation method is employed to study the uniaxial tensile deformation of nanocrystalline magnesium(Mg)of varying grain size levels.The mean grain size of the sample is varied from 6.4...Classical molecular dynamics(MD)simulation method is employed to study the uniaxial tensile deformation of nanocrystalline magnesium(Mg)of varying grain size levels.The mean grain size of the sample is varied from 6.4 nm to 45 nm,with each sample containing about 43 million atoms in the modeling system.The deformation nanomechanics reveals two distinct deformation mechanisms.For larger grain-sized samples,dislocation dominated deformation is observed while,in smaller grain-sized samples,grain boundary-based mechanisms such as grain boundary sliding,grain boundary rotation are observed.The transition of normal and inverse Hall-Petch relation occurs at around lOnm.Dislocation density quantification shows that the dislocation density in the sample drastically reduces with decreasing grain size.Elastic modulus of nanocrystalline Mg with mean grain size above 20 nm remains comparable to that of the coarse-grained polycrystalline bulk,followed by a rapid reduction below that grain size.The present work reveals the nanomechanics of nanocrystalline Mg,facilitating the design and development of Mg-based nanostructured alloys with superior mechanical properties.展开更多
Property characterization of nanomaterials is challenged by the small size of the structure be-cause of the difficulties in manipulation Here we demonstrate a novel approach that allows a direct measurement of the mec...Property characterization of nanomaterials is challenged by the small size of the structure be-cause of the difficulties in manipulation Here we demonstrate a novel approach that allows a direct measurement of the mechanical properties of individual nanotube-like structures by in-situ transmission electron microscopy (TEM). The technique is powerful in a way that it can directly correlate the atomic-scale microstructure of the carbon nanotube with its physical properties, providing a one-to-one correspondence in structure-property characterization Applications of the technique will be demonstrated on mechanical properties, the electron field emission and the ballistic quantum conductance in individual nanotubes.展开更多
BACKGROUND To assess the effectiveness of Shugan Jieyu capsules on peripheral blood miR-124,miR-132,and brain-derived neurotrophic factor(BDNF)levels in patients with mild to moderate depression following coronary art...BACKGROUND To assess the effectiveness of Shugan Jieyu capsules on peripheral blood miR-124,miR-132,and brain-derived neurotrophic factor(BDNF)levels in patients with mild to moderate depression following coronary artery intervention[percuta-neous coronary intervention(PCI)]for coronary heart disease.Patients with mild-to-moderate depression of the liver-qi stagnation type after PCI for coronary heart disease at the 305th Hospital of the People’s Liberation Army were enrolled from June 2022 to November 2023 and randomly assigned to two groups:Experimental(treated with Shugan Jieyu capsules)and control(tr-eated with escitalopram oxalate tablets).This study compared the antidepressant effects of these treatments using 17-item Hamilton Rating Scale for Depression(HAMD-17)scores,metabolic equivalents,low-density lipoprotein cholesterol,BDNF,high-sensitivity C-reactive protein levels,miR-124 and miR-132 levels,distribution of immune-related lymphocyte subsets,and traditional Chinese me-dicine syndrome scores before and after 6 weeks of treatment.RESULTS No significant difference was observed in any index between the two groups before treatment(P>0.05).After treatment,the total efficacy rates were 93.33%and 90.00%in the experimental and control groups,respectively.Experimental group had significantly lower scores for the main and secondary syndromes compared to the control group(P<0.05).No significant difference was observed in the metabolic equivalents between the two groups be-fore and after treatment(P>0.05).The levels of low-density lipoprotein cholesterol,high-sensitivity C-reactive pro-tein,and miR-132 were significantly lower,whereas those of miR-124,BDNF,CD3+T lymphocytes,CD3+CD4+T helper lymphocytes,and CD3+CD4+/CD3+CD8+cells were significantly higher in the experimental group com-pared to the control group(P<0.05).The incidence of adverse reactions during experimental group was signi-ficantly lower than that in control group(P<0.05).CONCLUSION Shugan Jieyu capsules have good efficacy in patients with mild-to-moderate depression after PCI,and its me-chanism may contribute to the regulation of miR-124,miR-132,BDNF levels,and lymphoid immune cells.展开更多
Micro- and nano-plastics (MNPs) are tiny plastic particles resulting from plastic product degradation. Soil MNPs have been identified as potential influential factors affecting various soil properties and crop biomass...Micro- and nano-plastics (MNPs) are tiny plastic particles resulting from plastic product degradation. Soil MNPs have been identified as potential influential factors affecting various soil properties and crop biomass productivity. This mini-review provides a synthesis of recent findings concerning their effects on soil physicochemical properties, microorganisms, organic carbon content, soil nutrients, greenhouse gas emissions, soil fauna, and their impacts on plant ecophysiology, growth, and production. The results indicate that MNPs may markedly impede soil aggregation ability, increase porosity, decrease soil bulk density, enhance water retention capacity, influence soil pH and electrical conductivity, and escalate soil water evaporation. Exposure to MNPs may predominantly induce changes in soil microbial composition, reducing the diversity and complexity of microbial communities and microbial activity while enhancing soil organic carbon stability, influencing soil nutrient dynamics, and stimulating organic carbon decomposition and denitrification processes, leading to elevated soil respiration and methane emissions, and potentially decreasing soil nitrous oxide emission. Additionally, MNPs may adversely affect soil fauna, diminish seed germination rates, promote plant root growth, yet impair plant photosynthetic efficacy and biomass productivity. These findings contribute to a better understanding of the impacts and mechanistic foundations of MNPs. Future research avenues are suggested to further explore the impacts and economic implications.展开更多
Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, A...Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, AFM, XPS and nanoindenter techniques. It is suggested from the XRD patterns that highly c-axis oriented films grow preferentially at low pressures and the growth of(100) planes are preferred at higher pressures. The SEM and AFM images both reveal that the deposition rate and the surface roughness decrease while the average grain size increases with increasing the sputtering pressure. XPS results show that lowering the sputtering pressure is a useful way to minimize the incorporation of oxygen atoms into the AlN films and hence a film with closer stoichiometric composition is obtained. From the measurement of nanomechanical properties of AlN thin films, the largest hardness and elastic modulus are obtained at 0.30 Pa.展开更多
The nanomechanical behaviors of (110) and (111 ) CdZnTe crystals were investigated by nanoindentation. It was found that the indenter tip was adhered by the removed materials in scanning testing area although the ...The nanomechanical behaviors of (110) and (111 ) CdZnTe crystals were investigated by nanoindentation. It was found that the indenter tip was adhered by the removed materials in scanning testing area although the scanning force on the tested surface was very small (1000 nN), which would affect the testing result of nanoindentation, so the indenter was clean before nanoindentation test. The experimemtal results showed that the hardness and Young's modulus decreased with the increase of indentation loads on the same plane. Because of the anisotropy of the CdZnTe crystal, the average hardness of (110) plane is 35% lower than that of (111) plane, and there are about 30% difference of the hardness along different crystallographic directions on the same plane. The hardness in 0° and 120° testing directions was the same due to the threefold symmetry of a Berkovich indenter. And the anisotropy affected the surface quality during machining of CdZnTe crystal.展开更多
In the present work, osteoblast behavior on a hierarchical micro-/nano-structured titanium surface was investigated. A hi- erarchical hybrid micro-/nano-structured titanium surface topography was produced via Electrol...In the present work, osteoblast behavior on a hierarchical micro-/nano-structured titanium surface was investigated. A hi- erarchical hybrid micro-/nano-structured titanium surface topography was produced via Electrolytic Etching (EE). MG-63 cells were cultured on disks for 2 h to 7 days. The osteoblast response to the hierarchical hybrid micro-/nano-structured titanium surface was evaluated through the osteoblast cell morphology, attachment and proliferation. For comparison, MG-63 cells were also cultured on Sandblasted and Acid-etched (SEA) as well as Machined (M) surfaces respectively. The results show signifi- cant differences in the adhesion rates and proliferation levels of MG-63 cells on EE, SLA, and M surfaces. Both adhesion rate and proliferation level on EE surface are higher than those on SLA and M surfaces. Therefore, we may expect that, comparing with SLA and M surfaces, bone growth on EE surface could be accelerated and bone formation could be promoted at an early stage, which could be applied in the clinical practices for immediate and early-stage loadings.展开更多
In this paper,macro-and micro-properties of natural marine clay in two different and representative regions of China are investigated in detail.In addition to in-situ tests,soil samples are collected by use of Shelby ...In this paper,macro-and micro-properties of natural marine clay in two different and representative regions of China are investigated in detail.In addition to in-situ tests,soil samples are collected by use of Shelby tubes for laboratory examination in Shanghai and Zhuhai respectively,two coastal cities in China.In the laboratory tests,macro-properties such as consolidation characteristics and undrained shear strength are measured.Moreover,X-ray diffraction test,scanning electron microscope test,and mercury intrusion test are carried out for the investigation of their micro-properties including clay minerals and microstructure.The study shows that:(1)both clays are Holocene series formations,classified as either normal or underconsolidated soils.The initial gradient of the stress-strain curves shows their increase with increasing consolidation pressure;however,the Shanghai and the Zhuhai clays are both structural soils with the latter shown to be more structured than the former.As a result,the Zhuhai clay shows strain softening behavior at low confining pressures,but strain hardening at high pressures.In contrast,the Shanghai clay mainly manifests strain-hardening.(2)An activity ranges from 0.75 to 1.30 for the Shanghai marine clay and from 0.5 to 0.85 for the Zhuhai marine clay.The main clay mineral is illite in the Shanghai clay and kaolinite in the Zhuhai clay.The Zhuhai clay is mainly characterized by a flocculated structure,while the typical Shanghai clay shows a dispersed structure.The porous structure of the Shanghai clay is characterized mainly by large and medium-sized pores,while the Zhuhai clay porous structure is mainly featured by small and medium-sized pores.The differences in their macro-and micro-properties can be attributed to different sedimentation environments.展开更多
Nanomechanical properties of mulfilayer films constructed of polyaniline (PAN/) and azobeneze-containing polyelectrolytes (PNACN and PPAPE) were studied by using nanoindentation method. The multilayer films were p...Nanomechanical properties of mulfilayer films constructed of polyaniline (PAN/) and azobeneze-containing polyelectrolytes (PNACN and PPAPE) were studied by using nanoindentation method. The multilayer films were prepared by the electrostatic layer-by-layer self-assembly through alternately dipping in the polymer solutions. The multilayer films deposited onto the glass slides after proper dry were used for the nanomechanical property testing. The nanomechanical measurement indicated that the PANI/PNACN and PANI/PPAPE multilayers possessed the mean elastic modulus of 5.42 GPa and 4.35 GPa, and hardness of 0.26 GPa and 0.18 GPa, respectively. The nanoscratch properties of the PANI/PNACN and PANI/PPAPE multilayer films were also measured. The critical loads of PANUPNACN and PANI/PPAPE films were 103.52 mN and 100.59 mN. The degree of electrostatic cross-linking in the multilayers could be altered by exposing the films to aqueous solutions with different pH values. As a result, the modulus and hardness of the multilayer films were changed through the solvent treatment. Both modulus and hardness of the PANI/PNACN films obviously increased after dipping the multilayer films in solutions with pH iri a range from 9 to 11.展开更多
Ultrasensitive nanomechanical instruments,e.g.atomic force microscopy(AFM),can be used to perform delicate biomechanical measurements and reveal the complex mechanical environment of biological processes.However,these...Ultrasensitive nanomechanical instruments,e.g.atomic force microscopy(AFM),can be used to perform delicate biomechanical measurements and reveal the complex mechanical environment of biological processes.However,these instruments are limited because of their size and complex feedback system.In this study,we demonstrate a miniature fiber optical nanomechanical probe(FONP)that can be used to detect the mechanical properties of single cells and in vivo tissue measurements.A FONP that can operate in air and in liquids was developed by programming a microcantilever probe on the end face of a single-mode fiber using femtosecond laser two-photon polymerization nanolithography.To realize stiffness matching of the FONP and sample,a strategy of customizing the microcantilever’s spring constant according to the sample was proposed based on structure-correlated mechanics.As a proof-of concept,three FONPs with spring constants varying from 0.421 N m^(−1)to 52.6 N m^(−1)by more than two orders of magnitude were prepared.The highest microforce sensitivity was 54.5 nmμN^(−1)and the detection limit was 2.1 nN.The Young’s modulus of heterogeneous soft materials,such as polydimethylsiloxane,muscle tissue of living mice,onion cells,and MCF-7 cells,were successfully measured,which validating the broad applicability of this method.Our strategy provides a universal protocol for directly programming fiber-optic AFMs.Moreover,this method has no special requirements for the size and shape of living biological samples,which is infeasible when using commercial AFMs.FONP has made substantial progress in realizing basic biological discoveries,which may create new biomedical applications that cannot be realized by current AFMs.展开更多
Versatile liquid manipulating surfaces combining patternable and controllable wettability have recently motivated considerable attention owing to their significant advantages in droplet-solid impacting behaviors,micro...Versatile liquid manipulating surfaces combining patternable and controllable wettability have recently motivated considerable attention owing to their significant advantages in droplet-solid impacting behaviors,microdroplet self-removal,and liquid–liquid interface reaction applications.However,developing a facile and efficient method to fabricate these versatile surfaces remains an enormous challenge.In this paper,a strategy for the fabrication of liquid manipulating surfaces with patternable and controllable wettability on Polyimide(PI)film based on femtosecond laser thermal accumulation engineering is proposed.Because of its controllable micro-/nanostructures and chemical composition through adjusting the local thermal accumulation,the wettability of PI film can be tuned from superhydrophilicity(~3.6°)to superhydrophobicity(~151.6°).Furthermore,three diverse surfaces with patternable and heterogeneous wettability were constructed and various applications were successfully realized,including water transport,droplet arrays,and liquid wells.This work may provide a facile strategy for achieving patternable and controllable wettability efficiently and developing multifunctional liquid steering surfaces.展开更多
Treatment of petroleum spills and organic solvent pollution in general is an important issue; several techniques are under development to remove oil from water. The use of absorbents is one of the most common techniqu...Treatment of petroleum spills and organic solvent pollution in general is an important issue; several techniques are under development to remove oil from water. The use of absorbents is one of the most common techniques to tackle this problem. These absorbents can be classified based on their characteristics of recyclability into irreversible and reversible ones. In this review, we discuss the application of several materials as oil absorbents, according to their classification and characteristics such as hydrophobicity, surface area and oil absorption capacity. Also, the fabrication methods for some materials are presented and analyzed.展开更多
Efficient synthesis of transition metal hydroxides on conductive substrate is essential for enhancing their merits in industrialization of energy storage field.However,most of the synthetic routes at present mainly re...Efficient synthesis of transition metal hydroxides on conductive substrate is essential for enhancing their merits in industrialization of energy storage field.However,most of the synthetic routes at present mainly rely on traditional bottom-up method,which involves tedious steps,time-consuming treatments,or additional alkaline media,and is unfavorable for high-efficiency production.Herein,we present a facile,ultrafast and general avenue to synthesize transition metal hydroxides on carbon substrate within 13 s by Joule-heating method.With high reaction kinetics caused by the instantaneous high temperature,seven kinds of transition metal-layered hydroxides(TM-LDHs)are formed on carbon cloth.Therein,the fastest synthesis rate reaches~0.46 cm^(2)s^(-1).Density functional theory calculations further demonstrate the nucleation energy barriers and potential mechanism for the formation of metal-based hydroxides on carbon substrates.This efficient approach avoids the use of extra agents,multiple steps,and long production time and endows the LDHs@carbon cloth with outstanding flexibility and machinability,showing practical advantages in both common and micro-zinc ion-based energy storage devices.To prove its utility,as a cathode in rechargeable aqueous alkaline Zn(micro-)battery,the NiCo LDH@carbon cloth exhibits a high energy density,superior to most transition metal LDH materials reported so far.展开更多
Microand nano-sized SiC/fluoroelastomer (FKM) composites were prepared by a mechanical mixing method. These composites were first characterized by a rotorless rheometer. Then the effects of micro- and nano-sized SiC...Microand nano-sized SiC/fluoroelastomer (FKM) composites were prepared by a mechanical mixing method. These composites were first characterized by a rotorless rheometer. Then the effects of micro- and nano-sized SiC on hardness, static and dynamic mechanical properties of the composites were investigated. The increasing amount of the SiC filler increased the curing efficiency of the biphenyl curing system, which was evident from the rheometric properties of the resulting composites. The tensile properties of composite increased with the increasing of micro- and nano-sized SiC content. When the micro- and nano-sized SiC content was higher than 20 phr, the composites showed almost unchanged tensile properties. The increasing of the tensile property was mainly attributed to the well dispersed micro- and nano-sized SiC particles characterized by SEM images. Compared to pure FKM, the composites exhibited a higher glass transition temperature and lower tan peak value.展开更多
By conducting experimental analyses, including thermal pyrolysis, micro-/nano-CT, argon-ion polishing field emission scanning electron microscopy (FE-SEM), confocal laser scanning microscopy (CLSM), and two-dimensiona...By conducting experimental analyses, including thermal pyrolysis, micro-/nano-CT, argon-ion polishing field emission scanning electron microscopy (FE-SEM), confocal laser scanning microscopy (CLSM), and two-dimensional nuclear magnetic resonance (2D NMR), the Gulong shale oil in the Songliao Basin was investigated with respect to formation model, pore structure and accumulation mechanism. First, in the Gulong shale, there are a large number of pico-algae, nano-algae and dinoflagellates, which were formed in brackish water environment and constituted the hydrogen-rich oil source materials of shale. Second, most of the oil-generating materials of the Qingshankou Formation shale exist in the form of organo-clay complex. During organic matter thermal evolution, clay minerals had double effects of suppression and catalytic hydrogenation, which expanded shale oil window and increased light hydrocarbon yield. Third, the formation of storage space in the Gulong Shale was related to dissolution and hydrocarbon generation. With the diagenesis, micro-/nano-pores increased, pore diameter decreased and more bedding fractures appeared, which jointly gave rise to the unique reservoir with dual media (i.e. nano-scale pores and micro-scale bedding fractures) in the Gulong shale. Fourth, the micro-/nano-scale oil storage unit in the Gulong shale exhibits independent oil/gas occurrence phase, and shows that all-size pores contain oils, which occur in condensate state in micropores or in oil-gas two phase (or liquid) state in macropores/mesopores. The understanding about Gulong shale oil formation and accumulation mechanism has theoretical and practical significance for advancing continental shale oil exploration in China.展开更多
We propose an effective mechanism to couple superconducting charge and flux qubits by using a quantized nanomechanical resonator. The coupling between the charge and flux qubits can be controlled by the external flux ...We propose an effective mechanism to couple superconducting charge and flux qubits by using a quantized nanomechanical resonator. The coupling between the charge and flux qubits can be controlled by the external flux of the charge qubit. Under the strong coupling limR, an iSWAP gate can be generated by this scheme. The experimental feasibility in our scheme is also presented.展开更多
We show nanomechanical force is useful to dynamically control the optical response of self-assembled quantum dots, giving a method to shift electron and heavy hole levels, interval of electron and heavy hole energy le...We show nanomechanical force is useful to dynamically control the optical response of self-assembled quantum dots, giving a method to shift electron and heavy hole levels, interval of electron and heavy hole energy levels, and the emission wavelength of quantum dots (QDs). The strain, the electron energy levels, and heavy hole energy levels of InAs/GaAs(001) quantum dots with vertical nanomechanical force are investigated. Both the lattice mismatch and nanomechanical force are considered at the same time. The results show that the hydrostatic and the biaxial strains inside the QDs subjected to nanomechanical force vary with nanomechanical force. That gives the control for tailoring band gaps and optical response. Moreover, due to strain-modified energy, the band edge is also influenced by nanomechanical force. The nanomechanical force is shown to influence the band edge. As is well known, the band offset affects the electronic structure, which shows that the nanomechanical force is proven to be useful to tailor the emission wavelength of QDs. Our research helps to better understand how the nanomechanical force can be used to dynamically control the optics of quantum dots.展开更多
文摘Introduction Scaling down to the micro- and nanoscale is a strong current trend in the development of science and technology. 'Small is energy efficient and cost effective' has long been for the motto of the semiconductor industry, including micro- and nanoelectronics, micro-electro-mechanical systems (MEMS) and nanoelectro-mechanical systems (NEMS).
基金This work was performed under the auspices of startup funds from the San Diego State University(SDSU)the support of the US National Science of Foundation,Division of Materials Research,under Award No.1900876.
文摘Classical molecular dynamics(MD)simulation method is employed to study the uniaxial tensile deformation of nanocrystalline magnesium(Mg)of varying grain size levels.The mean grain size of the sample is varied from 6.4 nm to 45 nm,with each sample containing about 43 million atoms in the modeling system.The deformation nanomechanics reveals two distinct deformation mechanisms.For larger grain-sized samples,dislocation dominated deformation is observed while,in smaller grain-sized samples,grain boundary-based mechanisms such as grain boundary sliding,grain boundary rotation are observed.The transition of normal and inverse Hall-Petch relation occurs at around lOnm.Dislocation density quantification shows that the dislocation density in the sample drastically reduces with decreasing grain size.Elastic modulus of nanocrystalline Mg with mean grain size above 20 nm remains comparable to that of the coarse-grained polycrystalline bulk,followed by a rapid reduction below that grain size.The present work reveals the nanomechanics of nanocrystalline Mg,facilitating the design and development of Mg-based nanostructured alloys with superior mechanical properties.
文摘Property characterization of nanomaterials is challenged by the small size of the structure be-cause of the difficulties in manipulation Here we demonstrate a novel approach that allows a direct measurement of the mechanical properties of individual nanotube-like structures by in-situ transmission electron microscopy (TEM). The technique is powerful in a way that it can directly correlate the atomic-scale microstructure of the carbon nanotube with its physical properties, providing a one-to-one correspondence in structure-property characterization Applications of the technique will be demonstrated on mechanical properties, the electron field emission and the ballistic quantum conductance in individual nanotubes.
基金the 305 Hospital Independent Scientific Research Fund,2024,No.24ZZJJLW-022.
文摘BACKGROUND To assess the effectiveness of Shugan Jieyu capsules on peripheral blood miR-124,miR-132,and brain-derived neurotrophic factor(BDNF)levels in patients with mild to moderate depression following coronary artery intervention[percuta-neous coronary intervention(PCI)]for coronary heart disease.Patients with mild-to-moderate depression of the liver-qi stagnation type after PCI for coronary heart disease at the 305th Hospital of the People’s Liberation Army were enrolled from June 2022 to November 2023 and randomly assigned to two groups:Experimental(treated with Shugan Jieyu capsules)and control(tr-eated with escitalopram oxalate tablets).This study compared the antidepressant effects of these treatments using 17-item Hamilton Rating Scale for Depression(HAMD-17)scores,metabolic equivalents,low-density lipoprotein cholesterol,BDNF,high-sensitivity C-reactive protein levels,miR-124 and miR-132 levels,distribution of immune-related lymphocyte subsets,and traditional Chinese me-dicine syndrome scores before and after 6 weeks of treatment.RESULTS No significant difference was observed in any index between the two groups before treatment(P>0.05).After treatment,the total efficacy rates were 93.33%and 90.00%in the experimental and control groups,respectively.Experimental group had significantly lower scores for the main and secondary syndromes compared to the control group(P<0.05).No significant difference was observed in the metabolic equivalents between the two groups be-fore and after treatment(P>0.05).The levels of low-density lipoprotein cholesterol,high-sensitivity C-reactive pro-tein,and miR-132 were significantly lower,whereas those of miR-124,BDNF,CD3+T lymphocytes,CD3+CD4+T helper lymphocytes,and CD3+CD4+/CD3+CD8+cells were significantly higher in the experimental group com-pared to the control group(P<0.05).The incidence of adverse reactions during experimental group was signi-ficantly lower than that in control group(P<0.05).CONCLUSION Shugan Jieyu capsules have good efficacy in patients with mild-to-moderate depression after PCI,and its me-chanism may contribute to the regulation of miR-124,miR-132,BDNF levels,and lymphoid immune cells.
文摘Micro- and nano-plastics (MNPs) are tiny plastic particles resulting from plastic product degradation. Soil MNPs have been identified as potential influential factors affecting various soil properties and crop biomass productivity. This mini-review provides a synthesis of recent findings concerning their effects on soil physicochemical properties, microorganisms, organic carbon content, soil nutrients, greenhouse gas emissions, soil fauna, and their impacts on plant ecophysiology, growth, and production. The results indicate that MNPs may markedly impede soil aggregation ability, increase porosity, decrease soil bulk density, enhance water retention capacity, influence soil pH and electrical conductivity, and escalate soil water evaporation. Exposure to MNPs may predominantly induce changes in soil microbial composition, reducing the diversity and complexity of microbial communities and microbial activity while enhancing soil organic carbon stability, influencing soil nutrient dynamics, and stimulating organic carbon decomposition and denitrification processes, leading to elevated soil respiration and methane emissions, and potentially decreasing soil nitrous oxide emission. Additionally, MNPs may adversely affect soil fauna, diminish seed germination rates, promote plant root growth, yet impair plant photosynthetic efficacy and biomass productivity. These findings contribute to a better understanding of the impacts and mechanistic foundations of MNPs. Future research avenues are suggested to further explore the impacts and economic implications.
基金Project(21271188)supported by the National Natural Science Foundation of ChinaProject(2012M521541)supported by the China Postdoctoral Science Foundation+2 种基金Project(2012QNZT002)supported by the Fundamental Research Funds for the Central South Universities,ChinaProject(20110933K)supported by the State Key Laboratory of Powder Metallurgy,ChinaProject(CSU2012024)supported by the Open-End Fund for Valuable and Precision Instruments of Central South University,China
文摘Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, AFM, XPS and nanoindenter techniques. It is suggested from the XRD patterns that highly c-axis oriented films grow preferentially at low pressures and the growth of(100) planes are preferred at higher pressures. The SEM and AFM images both reveal that the deposition rate and the surface roughness decrease while the average grain size increases with increasing the sputtering pressure. XPS results show that lowering the sputtering pressure is a useful way to minimize the incorporation of oxygen atoms into the AlN films and hence a film with closer stoichiometric composition is obtained. From the measurement of nanomechanical properties of AlN thin films, the largest hardness and elastic modulus are obtained at 0.30 Pa.
基金supported by the Key Project of National Natural Science Foundation of China (No.50535020)
文摘The nanomechanical behaviors of (110) and (111 ) CdZnTe crystals were investigated by nanoindentation. It was found that the indenter tip was adhered by the removed materials in scanning testing area although the scanning force on the tested surface was very small (1000 nN), which would affect the testing result of nanoindentation, so the indenter was clean before nanoindentation test. The experimemtal results showed that the hardness and Young's modulus decreased with the increase of indentation loads on the same plane. Because of the anisotropy of the CdZnTe crystal, the average hardness of (110) plane is 35% lower than that of (111) plane, and there are about 30% difference of the hardness along different crystallographic directions on the same plane. The hardness in 0° and 120° testing directions was the same due to the threefold symmetry of a Berkovich indenter. And the anisotropy affected the surface quality during machining of CdZnTe crystal.
文摘In the present work, osteoblast behavior on a hierarchical micro-/nano-structured titanium surface was investigated. A hi- erarchical hybrid micro-/nano-structured titanium surface topography was produced via Electrolytic Etching (EE). MG-63 cells were cultured on disks for 2 h to 7 days. The osteoblast response to the hierarchical hybrid micro-/nano-structured titanium surface was evaluated through the osteoblast cell morphology, attachment and proliferation. For comparison, MG-63 cells were also cultured on Sandblasted and Acid-etched (SEA) as well as Machined (M) surfaces respectively. The results show signifi- cant differences in the adhesion rates and proliferation levels of MG-63 cells on EE, SLA, and M surfaces. Both adhesion rate and proliferation level on EE surface are higher than those on SLA and M surfaces. Therefore, we may expect that, comparing with SLA and M surfaces, bone growth on EE surface could be accelerated and bone formation could be promoted at an early stage, which could be applied in the clinical practices for immediate and early-stage loadings.
基金supported bythe National Natural Science Foundation of China(Grant No.50679057)the National High Technology Research and Development Program of China(863 Program,Grnat No.2006AA11Z102)+1 种基金the Shanghai Pujiang Program(Grant No.06PJ14088)the Zhuhai city Science Technology Program(Grant No.PA200310064)
文摘In this paper,macro-and micro-properties of natural marine clay in two different and representative regions of China are investigated in detail.In addition to in-situ tests,soil samples are collected by use of Shelby tubes for laboratory examination in Shanghai and Zhuhai respectively,two coastal cities in China.In the laboratory tests,macro-properties such as consolidation characteristics and undrained shear strength are measured.Moreover,X-ray diffraction test,scanning electron microscope test,and mercury intrusion test are carried out for the investigation of their micro-properties including clay minerals and microstructure.The study shows that:(1)both clays are Holocene series formations,classified as either normal or underconsolidated soils.The initial gradient of the stress-strain curves shows their increase with increasing consolidation pressure;however,the Shanghai and the Zhuhai clays are both structural soils with the latter shown to be more structured than the former.As a result,the Zhuhai clay shows strain softening behavior at low confining pressures,but strain hardening at high pressures.In contrast,the Shanghai clay mainly manifests strain-hardening.(2)An activity ranges from 0.75 to 1.30 for the Shanghai marine clay and from 0.5 to 0.85 for the Zhuhai marine clay.The main clay mineral is illite in the Shanghai clay and kaolinite in the Zhuhai clay.The Zhuhai clay is mainly characterized by a flocculated structure,while the typical Shanghai clay shows a dispersed structure.The porous structure of the Shanghai clay is characterized mainly by large and medium-sized pores,while the Zhuhai clay porous structure is mainly featured by small and medium-sized pores.The differences in their macro-and micro-properties can be attributed to different sedimentation environments.
文摘Nanomechanical properties of mulfilayer films constructed of polyaniline (PAN/) and azobeneze-containing polyelectrolytes (PNACN and PPAPE) were studied by using nanoindentation method. The multilayer films were prepared by the electrostatic layer-by-layer self-assembly through alternately dipping in the polymer solutions. The multilayer films deposited onto the glass slides after proper dry were used for the nanomechanical property testing. The nanomechanical measurement indicated that the PANI/PNACN and PANI/PPAPE multilayers possessed the mean elastic modulus of 5.42 GPa and 4.35 GPa, and hardness of 0.26 GPa and 0.18 GPa, respectively. The nanoscratch properties of the PANI/PNACN and PANI/PPAPE multilayer films were also measured. The critical loads of PANUPNACN and PANI/PPAPE films were 103.52 mN and 100.59 mN. The degree of electrostatic cross-linking in the multilayers could be altered by exposing the films to aqueous solutions with different pH values. As a result, the modulus and hardness of the multilayer films were changed through the solvent treatment. Both modulus and hardness of the PANI/PNACN films obviously increased after dipping the multilayer films in solutions with pH iri a range from 9 to 11.
基金supported by the National Natural Science Foundation of China(NSFC)(62122057,62075136,62175165)Natural Science Foundation of Guangdong Province(2022B1515120061,2019B1515120042)Science and Technology Innovation Commission of Shenzhen(RCYX20200714114524139,JCYJ20200109114001806).
文摘Ultrasensitive nanomechanical instruments,e.g.atomic force microscopy(AFM),can be used to perform delicate biomechanical measurements and reveal the complex mechanical environment of biological processes.However,these instruments are limited because of their size and complex feedback system.In this study,we demonstrate a miniature fiber optical nanomechanical probe(FONP)that can be used to detect the mechanical properties of single cells and in vivo tissue measurements.A FONP that can operate in air and in liquids was developed by programming a microcantilever probe on the end face of a single-mode fiber using femtosecond laser two-photon polymerization nanolithography.To realize stiffness matching of the FONP and sample,a strategy of customizing the microcantilever’s spring constant according to the sample was proposed based on structure-correlated mechanics.As a proof-of concept,three FONPs with spring constants varying from 0.421 N m^(−1)to 52.6 N m^(−1)by more than two orders of magnitude were prepared.The highest microforce sensitivity was 54.5 nmμN^(−1)and the detection limit was 2.1 nN.The Young’s modulus of heterogeneous soft materials,such as polydimethylsiloxane,muscle tissue of living mice,onion cells,and MCF-7 cells,were successfully measured,which validating the broad applicability of this method.Our strategy provides a universal protocol for directly programming fiber-optic AFMs.Moreover,this method has no special requirements for the size and shape of living biological samples,which is infeasible when using commercial AFMs.FONP has made substantial progress in realizing basic biological discoveries,which may create new biomedical applications that cannot be realized by current AFMs.
基金This research is supported by National Natural Science Foundation of China(Nos.52075557,51805553)Natural Science Foundation of Hunan Province(No.2021JJ20067)+1 种基金The Science and Technology Innovation Program of Hunan Province(No.2021RC3011)Open access funding provided by Shanghai Jiao Tong University
文摘Versatile liquid manipulating surfaces combining patternable and controllable wettability have recently motivated considerable attention owing to their significant advantages in droplet-solid impacting behaviors,microdroplet self-removal,and liquid–liquid interface reaction applications.However,developing a facile and efficient method to fabricate these versatile surfaces remains an enormous challenge.In this paper,a strategy for the fabrication of liquid manipulating surfaces with patternable and controllable wettability on Polyimide(PI)film based on femtosecond laser thermal accumulation engineering is proposed.Because of its controllable micro-/nanostructures and chemical composition through adjusting the local thermal accumulation,the wettability of PI film can be tuned from superhydrophilicity(~3.6°)to superhydrophobicity(~151.6°).Furthermore,three diverse surfaces with patternable and heterogeneous wettability were constructed and various applications were successfully realized,including water transport,droplet arrays,and liquid wells.This work may provide a facile strategy for achieving patternable and controllable wettability efficiently and developing multifunctional liquid steering surfaces.
基金the Universidad Autónoma de Nuevo León (Monterrey city, Mexico) for financial support (Project Paicyt-2015)
文摘Treatment of petroleum spills and organic solvent pollution in general is an important issue; several techniques are under development to remove oil from water. The use of absorbents is one of the most common techniques to tackle this problem. These absorbents can be classified based on their characteristics of recyclability into irreversible and reversible ones. In this review, we discuss the application of several materials as oil absorbents, according to their classification and characteristics such as hydrophobicity, surface area and oil absorption capacity. Also, the fabrication methods for some materials are presented and analyzed.
基金the NSFC(22075019)National Key R&D Program of China(2017YFB1104300)。
文摘Efficient synthesis of transition metal hydroxides on conductive substrate is essential for enhancing their merits in industrialization of energy storage field.However,most of the synthetic routes at present mainly rely on traditional bottom-up method,which involves tedious steps,time-consuming treatments,or additional alkaline media,and is unfavorable for high-efficiency production.Herein,we present a facile,ultrafast and general avenue to synthesize transition metal hydroxides on carbon substrate within 13 s by Joule-heating method.With high reaction kinetics caused by the instantaneous high temperature,seven kinds of transition metal-layered hydroxides(TM-LDHs)are formed on carbon cloth.Therein,the fastest synthesis rate reaches~0.46 cm^(2)s^(-1).Density functional theory calculations further demonstrate the nucleation energy barriers and potential mechanism for the formation of metal-based hydroxides on carbon substrates.This efficient approach avoids the use of extra agents,multiple steps,and long production time and endows the LDHs@carbon cloth with outstanding flexibility and machinability,showing practical advantages in both common and micro-zinc ion-based energy storage devices.To prove its utility,as a cathode in rechargeable aqueous alkaline Zn(micro-)battery,the NiCo LDH@carbon cloth exhibits a high energy density,superior to most transition metal LDH materials reported so far.
基金Funded by the National Natural Science Foundation of China(No.50979016)
文摘Microand nano-sized SiC/fluoroelastomer (FKM) composites were prepared by a mechanical mixing method. These composites were first characterized by a rotorless rheometer. Then the effects of micro- and nano-sized SiC on hardness, static and dynamic mechanical properties of the composites were investigated. The increasing amount of the SiC filler increased the curing efficiency of the biphenyl curing system, which was evident from the rheometric properties of the resulting composites. The tensile properties of composite increased with the increasing of micro- and nano-sized SiC content. When the micro- and nano-sized SiC content was higher than 20 phr, the composites showed almost unchanged tensile properties. The increasing of the tensile property was mainly attributed to the well dispersed micro- and nano-sized SiC particles characterized by SEM images. Compared to pure FKM, the composites exhibited a higher glass transition temperature and lower tan peak value.
基金Supported by the Central Guiding Local Science and Technology Development Special Project(ZY20B13)。
文摘By conducting experimental analyses, including thermal pyrolysis, micro-/nano-CT, argon-ion polishing field emission scanning electron microscopy (FE-SEM), confocal laser scanning microscopy (CLSM), and two-dimensional nuclear magnetic resonance (2D NMR), the Gulong shale oil in the Songliao Basin was investigated with respect to formation model, pore structure and accumulation mechanism. First, in the Gulong shale, there are a large number of pico-algae, nano-algae and dinoflagellates, which were formed in brackish water environment and constituted the hydrogen-rich oil source materials of shale. Second, most of the oil-generating materials of the Qingshankou Formation shale exist in the form of organo-clay complex. During organic matter thermal evolution, clay minerals had double effects of suppression and catalytic hydrogenation, which expanded shale oil window and increased light hydrocarbon yield. Third, the formation of storage space in the Gulong Shale was related to dissolution and hydrocarbon generation. With the diagenesis, micro-/nano-pores increased, pore diameter decreased and more bedding fractures appeared, which jointly gave rise to the unique reservoir with dual media (i.e. nano-scale pores and micro-scale bedding fractures) in the Gulong shale. Fourth, the micro-/nano-scale oil storage unit in the Gulong shale exhibits independent oil/gas occurrence phase, and shows that all-size pores contain oils, which occur in condensate state in micropores or in oil-gas two phase (or liquid) state in macropores/mesopores. The understanding about Gulong shale oil formation and accumulation mechanism has theoretical and practical significance for advancing continental shale oil exploration in China.
文摘We propose an effective mechanism to couple superconducting charge and flux qubits by using a quantized nanomechanical resonator. The coupling between the charge and flux qubits can be controlled by the external flux of the charge qubit. Under the strong coupling limR, an iSWAP gate can be generated by this scheme. The experimental feasibility in our scheme is also presented.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60908028, 60971068, 10979065, and 61275201)the Fundamental Research Funds for the Central Universities (Grant No. 2011RC0402)the Program for New Century Excellent Talents in University (Grant No. NCET-10-0261)
文摘We show nanomechanical force is useful to dynamically control the optical response of self-assembled quantum dots, giving a method to shift electron and heavy hole levels, interval of electron and heavy hole energy levels, and the emission wavelength of quantum dots (QDs). The strain, the electron energy levels, and heavy hole energy levels of InAs/GaAs(001) quantum dots with vertical nanomechanical force are investigated. Both the lattice mismatch and nanomechanical force are considered at the same time. The results show that the hydrostatic and the biaxial strains inside the QDs subjected to nanomechanical force vary with nanomechanical force. That gives the control for tailoring band gaps and optical response. Moreover, due to strain-modified energy, the band edge is also influenced by nanomechanical force. The nanomechanical force is shown to influence the band edge. As is well known, the band offset affects the electronic structure, which shows that the nanomechanical force is proven to be useful to tailor the emission wavelength of QDs. Our research helps to better understand how the nanomechanical force can be used to dynamically control the optics of quantum dots.